演化算法在高斯光束逆散射中的应用

Gadi Lahav, T. Melamed
{"title":"演化算法在高斯光束逆散射中的应用","authors":"Gadi Lahav, T. Melamed","doi":"10.1109/URSI-EMTS.2016.7571311","DOIUrl":null,"url":null,"abstract":"In this work we attempt to overcome the two main limitations of the generic inverse scattering problem: the size and the ill-posed nature of the problem. We use a solver that is based on the discrete Gaussian beam summation method and apply it for the special case of a smoothly varying inhomogeneous medium. In order to overcome the need to perform simplifying approximations for the propagating medium, we use evolutionary algorithms for the optimization scheme. Reconstruction results for several configurations are presented.","PeriodicalId":400853,"journal":{"name":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary algorithms applications for inverse scattering using Gaussian beams\",\"authors\":\"Gadi Lahav, T. Melamed\",\"doi\":\"10.1109/URSI-EMTS.2016.7571311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we attempt to overcome the two main limitations of the generic inverse scattering problem: the size and the ill-posed nature of the problem. We use a solver that is based on the discrete Gaussian beam summation method and apply it for the special case of a smoothly varying inhomogeneous medium. In order to overcome the need to perform simplifying approximations for the propagating medium, we use evolutionary algorithms for the optimization scheme. Reconstruction results for several configurations are presented.\",\"PeriodicalId\":400853,\"journal\":{\"name\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 URSI International Symposium on Electromagnetic Theory (EMTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URSI-EMTS.2016.7571311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2016.7571311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们试图克服一般逆散射问题的两个主要限制:问题的大小和病态性质。基于离散高斯光束求和法的求解方法,应用于光滑变化非均匀介质的特殊情况。为了克服对传播介质进行简化近似的需要,我们使用进化算法进行优化方案。给出了几种构型的重构结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary algorithms applications for inverse scattering using Gaussian beams
In this work we attempt to overcome the two main limitations of the generic inverse scattering problem: the size and the ill-posed nature of the problem. We use a solver that is based on the discrete Gaussian beam summation method and apply it for the special case of a smoothly varying inhomogeneous medium. In order to overcome the need to perform simplifying approximations for the propagating medium, we use evolutionary algorithms for the optimization scheme. Reconstruction results for several configurations are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信