稀疏信号恢复的树剪枝贪婪搜索算法

Jaeseok Lee, Seokbeop Kwon, B. Shim
{"title":"稀疏信号恢复的树剪枝贪婪搜索算法","authors":"Jaeseok Lee, Seokbeop Kwon, B. Shim","doi":"10.1109/ISIT.2014.6875153","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new sparse recovery algorithm referred to as the matching pursuit with a tree pruning (TMP) that performs efficient combinatoric search with the aid of greedy tree pruning. Two key ingredients of the TMP algorithm are pre-selection to put a restriction on the indices of columns in Φ being investigated and tree pruning to avoid the investigation of unpromising paths in the search. In the noisy setting, we show that TMP identifies the support (index set of nonzero elements) accurately when the signal power is larger than the constant multiple of noise power. In the empirical simulations, we confirm this results by showing that TMP performs close to an ideal estimator (often called Oracle estimate) for high signal-to-noise ratio (SNR) regime.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A greedy search algorithm with tree pruning for sparse signal recovery\",\"authors\":\"Jaeseok Lee, Seokbeop Kwon, B. Shim\",\"doi\":\"10.1109/ISIT.2014.6875153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new sparse recovery algorithm referred to as the matching pursuit with a tree pruning (TMP) that performs efficient combinatoric search with the aid of greedy tree pruning. Two key ingredients of the TMP algorithm are pre-selection to put a restriction on the indices of columns in Φ being investigated and tree pruning to avoid the investigation of unpromising paths in the search. In the noisy setting, we show that TMP identifies the support (index set of nonzero elements) accurately when the signal power is larger than the constant multiple of noise power. In the empirical simulations, we confirm this results by showing that TMP performs close to an ideal estimator (often called Oracle estimate) for high signal-to-noise ratio (SNR) regime.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种新的稀疏恢复算法,称为匹配追踪与树修剪(TMP),它在贪婪树修剪的帮助下进行有效的组合搜索。TMP算法的两个关键组成部分是预选,它对正在调查的Φ中的列的索引进行限制,以及树修剪,以避免在搜索中调查没有希望的路径。在噪声环境下,当信号功率大于噪声功率的常数倍时,TMP能够准确地识别支持(非零元素索引集)。在经验模拟中,我们通过显示TMP在高信噪比(SNR)制度下执行接近理想估计器(通常称为Oracle估计)来证实这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A greedy search algorithm with tree pruning for sparse signal recovery
In this paper, we propose a new sparse recovery algorithm referred to as the matching pursuit with a tree pruning (TMP) that performs efficient combinatoric search with the aid of greedy tree pruning. Two key ingredients of the TMP algorithm are pre-selection to put a restriction on the indices of columns in Φ being investigated and tree pruning to avoid the investigation of unpromising paths in the search. In the noisy setting, we show that TMP identifies the support (index set of nonzero elements) accurately when the signal power is larger than the constant multiple of noise power. In the empirical simulations, we confirm this results by showing that TMP performs close to an ideal estimator (often called Oracle estimate) for high signal-to-noise ratio (SNR) regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信