{"title":"洛伦兹-闵可夫斯基空间中直纹曲面的等距","authors":"Ljiljana Primorac Gajčić, Željka Milin-Šipuš","doi":"10.21857/y54jofpplm","DOIUrl":null,"url":null,"abstract":"In this paper we study isometries of ruled surfaces in the Lorentz-Minkowski space that preserve rulings. A special attention is given to the classes of surfaces having no Euclidean counterparts. We also construct some examples of isometric ruled surfaces with certain properties and rulings preserved.","PeriodicalId":269525,"journal":{"name":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minding isometries of ruled surfaces in Lorentz-Minkowski space\",\"authors\":\"Ljiljana Primorac Gajčić, Željka Milin-Šipuš\",\"doi\":\"10.21857/y54jofpplm\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study isometries of ruled surfaces in the Lorentz-Minkowski space that preserve rulings. A special attention is given to the classes of surfaces having no Euclidean counterparts. We also construct some examples of isometric ruled surfaces with certain properties and rulings preserved.\",\"PeriodicalId\":269525,\"journal\":{\"name\":\"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21857/y54jofpplm\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21857/y54jofpplm","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minding isometries of ruled surfaces in Lorentz-Minkowski space
In this paper we study isometries of ruled surfaces in the Lorentz-Minkowski space that preserve rulings. A special attention is given to the classes of surfaces having no Euclidean counterparts. We also construct some examples of isometric ruled surfaces with certain properties and rulings preserved.