确定实值函数的谓词逻辑理论

Stefan Ratschan
{"title":"确定实值函数的谓词逻辑理论","authors":"Stefan Ratschan","doi":"10.48550/arXiv.2306.16505","DOIUrl":null,"url":null,"abstract":"The notion of a real-valued function is central to mathematics, computer science, and many other scientific fields. Despite this importance, there are hardly any positive results on decision procedures for predicate logical theories that reason about real-valued functions. This paper defines a first-order predicate language for reasoning about multi-dimensional smooth real-valued functions and their derivatives, and demonstrates that - despite the obvious undecidability barriers - certain positive decidability results for such a language are indeed possible.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciding Predicate Logical Theories of Real-Valued Functions\",\"authors\":\"Stefan Ratschan\",\"doi\":\"10.48550/arXiv.2306.16505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of a real-valued function is central to mathematics, computer science, and many other scientific fields. Despite this importance, there are hardly any positive results on decision procedures for predicate logical theories that reason about real-valued functions. This paper defines a first-order predicate language for reasoning about multi-dimensional smooth real-valued functions and their derivatives, and demonstrates that - despite the obvious undecidability barriers - certain positive decidability results for such a language are indeed possible.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.16505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.16505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实值函数的概念是数学、计算机科学和许多其他科学领域的核心。尽管这一点很重要,但对于推理实值函数的谓词逻辑理论的决策过程,几乎没有任何积极的结果。本文定义了一种用于多维光滑实值函数及其导数推理的一阶谓词语言,并证明了尽管存在明显的不可判定障碍,但这种语言的某些正可判定结果确实是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciding Predicate Logical Theories of Real-Valued Functions
The notion of a real-valued function is central to mathematics, computer science, and many other scientific fields. Despite this importance, there are hardly any positive results on decision procedures for predicate logical theories that reason about real-valued functions. This paper defines a first-order predicate language for reasoning about multi-dimensional smooth real-valued functions and their derivatives, and demonstrates that - despite the obvious undecidability barriers - certain positive decidability results for such a language are indeed possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信