移动热管小型反应器内不可冷凝气体对热管传热性能的影响

Gao Tianyu, Zhou Tao, Liu Wenbin, Tang Jianyu, Lu Huaichang
{"title":"移动热管小型反应器内不可冷凝气体对热管传热性能的影响","authors":"Gao Tianyu, Zhou Tao, Liu Wenbin, Tang Jianyu, Lu Huaichang","doi":"10.1115/icone29-89437","DOIUrl":null,"url":null,"abstract":"\n Heat pipe cooled reactors have a promising future in the next generation of reactor design. The heat pipe, which is the core device for heat transfer from the core to the outside, determines the safety of the heat pipe reactor and the efficiency of power generation. In the high-temperature, high-pressure, high-irradiation environment of a nuclear reactor, the non-condensable gas produced by the lithium heat pipe - helium - affects the heat transfer efficiency of the heat pipe. Therefore, by modeling the heat transfer process of the heat pipe, the effect of the content of the non-condensable gas on the heat transfer performance of the heat pipe is calculated. It can be concluded that: at a certain input power, the temperature of both the hot end and the cold end of the heat pipe increases with the increase of the content of non-condensable gas; the distribution of non-condensable gas in the heat pipe is irregular, more at the hot end and less at the cold end; at a certain input power, the equivalent thermal resistance of the heat pipe increases with the increase of the content of non-condensable gas, and the higher the content of non-condensable gas, the greater the effect on the heat transfer effect of the heat pipe; in a certain range The effect of power on the equivalent thermal resistance of heat pipe is almost none.","PeriodicalId":365848,"journal":{"name":"Volume 5: Nuclear Safety, Security, and Cyber Security","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U Influence of Non-Condensable Gas in Mobile Heat Pipe Small Reactor on Heat Pipe Heat Transfer Performance\",\"authors\":\"Gao Tianyu, Zhou Tao, Liu Wenbin, Tang Jianyu, Lu Huaichang\",\"doi\":\"10.1115/icone29-89437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Heat pipe cooled reactors have a promising future in the next generation of reactor design. The heat pipe, which is the core device for heat transfer from the core to the outside, determines the safety of the heat pipe reactor and the efficiency of power generation. In the high-temperature, high-pressure, high-irradiation environment of a nuclear reactor, the non-condensable gas produced by the lithium heat pipe - helium - affects the heat transfer efficiency of the heat pipe. Therefore, by modeling the heat transfer process of the heat pipe, the effect of the content of the non-condensable gas on the heat transfer performance of the heat pipe is calculated. It can be concluded that: at a certain input power, the temperature of both the hot end and the cold end of the heat pipe increases with the increase of the content of non-condensable gas; the distribution of non-condensable gas in the heat pipe is irregular, more at the hot end and less at the cold end; at a certain input power, the equivalent thermal resistance of the heat pipe increases with the increase of the content of non-condensable gas, and the higher the content of non-condensable gas, the greater the effect on the heat transfer effect of the heat pipe; in a certain range The effect of power on the equivalent thermal resistance of heat pipe is almost none.\",\"PeriodicalId\":365848,\"journal\":{\"name\":\"Volume 5: Nuclear Safety, Security, and Cyber Security\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Nuclear Safety, Security, and Cyber Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-89437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Nuclear Safety, Security, and Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-89437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热管冷却堆在下一代反应堆设计中具有广阔的发展前景。热管是堆芯向外传递热量的核心装置,决定着热管堆的安全性和发电效率。在核反应堆的高温、高压、高辐照环境中,锂热管产生的不可凝性气体——氦影响了热管的传热效率。因此,通过对热管的传热过程进行建模,计算了不凝性气体含量对热管传热性能的影响。可以得出结论:在一定输入功率下,热管热端和冷端温度均随着不凝性气体含量的增加而升高;不凝性气体在热管中的分布不规则,热端多,冷端少;在一定输入功率下,热管的等效热阻随不凝气体含量的增加而增大,且不凝气体含量越高,对热管换热效果的影响越大;在一定范围内,功率对热管等效热阻的影响几乎为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
U Influence of Non-Condensable Gas in Mobile Heat Pipe Small Reactor on Heat Pipe Heat Transfer Performance
Heat pipe cooled reactors have a promising future in the next generation of reactor design. The heat pipe, which is the core device for heat transfer from the core to the outside, determines the safety of the heat pipe reactor and the efficiency of power generation. In the high-temperature, high-pressure, high-irradiation environment of a nuclear reactor, the non-condensable gas produced by the lithium heat pipe - helium - affects the heat transfer efficiency of the heat pipe. Therefore, by modeling the heat transfer process of the heat pipe, the effect of the content of the non-condensable gas on the heat transfer performance of the heat pipe is calculated. It can be concluded that: at a certain input power, the temperature of both the hot end and the cold end of the heat pipe increases with the increase of the content of non-condensable gas; the distribution of non-condensable gas in the heat pipe is irregular, more at the hot end and less at the cold end; at a certain input power, the equivalent thermal resistance of the heat pipe increases with the increase of the content of non-condensable gas, and the higher the content of non-condensable gas, the greater the effect on the heat transfer effect of the heat pipe; in a certain range The effect of power on the equivalent thermal resistance of heat pipe is almost none.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信