自动文本分类:案例研究

Renato Fernandes Corrêa, Teresa B Ludermir
{"title":"自动文本分类:案例研究","authors":"Renato Fernandes Corrêa, Teresa B Ludermir","doi":"10.1109/SBRN.2002.1181457","DOIUrl":null,"url":null,"abstract":"Text categorization is a process of classifying documents with regard to a group of one or more existent categories according to themes or concepts present in their contents. The most common application of it is in information retrieval systems (IRS) to document indexing. A method to transform text categorization into a viable task is to use machine-learning algorithms to automate text classification, allowing it to be carried out fast, into concise manner and in broad range. The objective of this work is to present and compare the results of experiments on text categorization using artificial neural networks of multilayer perceptron and self-organizing map types, and traditional machine-learning algorithms used in this task: C4.5 decision tree, PART decision rules and Naive Bayes classifier.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automatic text categorization: case study\",\"authors\":\"Renato Fernandes Corrêa, Teresa B Ludermir\",\"doi\":\"10.1109/SBRN.2002.1181457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text categorization is a process of classifying documents with regard to a group of one or more existent categories according to themes or concepts present in their contents. The most common application of it is in information retrieval systems (IRS) to document indexing. A method to transform text categorization into a viable task is to use machine-learning algorithms to automate text classification, allowing it to be carried out fast, into concise manner and in broad range. The objective of this work is to present and compare the results of experiments on text categorization using artificial neural networks of multilayer perceptron and self-organizing map types, and traditional machine-learning algorithms used in this task: C4.5 decision tree, PART decision rules and Naive Bayes classifier.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

文本分类是根据内容中的主题或概念对一组存在的一个或多个类别进行分类的过程。它最常见的应用是在信息检索系统(IRS)中对文档进行索引。将文本分类转换为可行任务的一种方法是使用机器学习算法自动进行文本分类,使其快速,简洁,范围广。本工作的目的是展示和比较使用多层感知器和自组织地图类型的人工神经网络进行文本分类的实验结果,以及在该任务中使用的传统机器学习算法:C4.5决策树,PART决策规则和朴素贝叶斯分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic text categorization: case study
Text categorization is a process of classifying documents with regard to a group of one or more existent categories according to themes or concepts present in their contents. The most common application of it is in information retrieval systems (IRS) to document indexing. A method to transform text categorization into a viable task is to use machine-learning algorithms to automate text classification, allowing it to be carried out fast, into concise manner and in broad range. The objective of this work is to present and compare the results of experiments on text categorization using artificial neural networks of multilayer perceptron and self-organizing map types, and traditional machine-learning algorithms used in this task: C4.5 decision tree, PART decision rules and Naive Bayes classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信