基于博弈论的配电系统可靠性改进

Mohammad Rahim Mohammadi, H. Rajabi Mashhadi
{"title":"基于博弈论的配电系统可靠性改进","authors":"Mohammad Rahim Mohammadi, H. Rajabi Mashhadi","doi":"10.30699/ijrrs.5.1.12","DOIUrl":null,"url":null,"abstract":"This paper presents a new competitive approach to provide reliability for distribution system customers. The model is based on the Cournot game and utilizes the Nash equilibrium concept to find the output of the problem. Reliability in the proposed framework is an ancillary service and the customers who participated in the program must pay for reliability provision. The proposed model also considers regulatory concerns of reliability insuring the average reliability of the system is not incurred. Based on the proposed model, customers will compete for their reliability enhancement considering all the constraints related to the network, regulator and each customer. The expected outage time for each customer is considered the reliability index in this paper. The model is investigated in a sample case study and the results show how a customer would behave if they participated in the reliability improvement program of distribution systems. Our results also show that there would exist a high motivation for both parties (utility and customers) to implement the proposed model for the reliability enhancement of the distribution system.","PeriodicalId":395350,"journal":{"name":"International Journal of Reliability, Risk and Safety: Theory and Application","volume":"771 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability Improvement in Distribution Systems Via Game Theory\",\"authors\":\"Mohammad Rahim Mohammadi, H. Rajabi Mashhadi\",\"doi\":\"10.30699/ijrrs.5.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new competitive approach to provide reliability for distribution system customers. The model is based on the Cournot game and utilizes the Nash equilibrium concept to find the output of the problem. Reliability in the proposed framework is an ancillary service and the customers who participated in the program must pay for reliability provision. The proposed model also considers regulatory concerns of reliability insuring the average reliability of the system is not incurred. Based on the proposed model, customers will compete for their reliability enhancement considering all the constraints related to the network, regulator and each customer. The expected outage time for each customer is considered the reliability index in this paper. The model is investigated in a sample case study and the results show how a customer would behave if they participated in the reliability improvement program of distribution systems. Our results also show that there would exist a high motivation for both parties (utility and customers) to implement the proposed model for the reliability enhancement of the distribution system.\",\"PeriodicalId\":395350,\"journal\":{\"name\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"volume\":\"771 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/ijrrs.5.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability, Risk and Safety: Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/ijrrs.5.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种为配电系统用户提供可靠性的竞争新方法。该模型基于古诺博弈,利用纳什均衡的概念来寻找问题的输出。拟议框架中的可靠性是一项辅助服务,参与计划的客户必须为可靠性条款付费。所提出的模型还考虑了可靠性的监管问题,以确保系统的平均可靠性不会产生。基于所提出的模型,考虑到与网络、监管机构和每个客户相关的所有约束,客户将为提高可靠性而竞争。本文将每个用户的预期停机时间作为可靠性指标。通过一个案例研究,分析了用户在参与配电系统可靠性改进计划时的行为。我们的研究结果还显示,双方(公用事业公司和客户)都有很高的动机来实施所提出的模型来提高配电系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability Improvement in Distribution Systems Via Game Theory
This paper presents a new competitive approach to provide reliability for distribution system customers. The model is based on the Cournot game and utilizes the Nash equilibrium concept to find the output of the problem. Reliability in the proposed framework is an ancillary service and the customers who participated in the program must pay for reliability provision. The proposed model also considers regulatory concerns of reliability insuring the average reliability of the system is not incurred. Based on the proposed model, customers will compete for their reliability enhancement considering all the constraints related to the network, regulator and each customer. The expected outage time for each customer is considered the reliability index in this paper. The model is investigated in a sample case study and the results show how a customer would behave if they participated in the reliability improvement program of distribution systems. Our results also show that there would exist a high motivation for both parties (utility and customers) to implement the proposed model for the reliability enhancement of the distribution system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信