一种基于0.3 thz sigb的倍频芯片,具有3db 50ghz带宽和17db峰值转换增益

Faisal Ahmed, M. Furqan, A. Stelzer
{"title":"一种基于0.3 thz sigb的倍频芯片,具有3db 50ghz带宽和17db峰值转换增益","authors":"Faisal Ahmed, M. Furqan, A. Stelzer","doi":"10.23919/EUMIC.2017.8230678","DOIUrl":null,"url":null,"abstract":"This paper presents a broadband frequency doubler chip working in the WR-03 band (220–325 GHz). The chip is implemented in a 130-nm SiGe BiCMOS technology with an of 250/300 GHz. It consists of an integrated high-gain wideband amplifier to drive the frequency doubler. The doubler is based on a cascode push-push topology. Conversion loss of the doubler is reduced by utilizing an inductive feedback in the common-base stage. A very wideband operation of the doubler is achieved using optimally sized transistors and 4-reactance based input matching network. On-wafer measurement of the chip shows a state-of-the-art 17.4 dB peak conversion gain at 270 GHz. It delivers a maximum output power of almost 1 mW with a 3-dB bandwidth ranging from 257 GHz to 307 GHz, which is the highest bandwidth for Si-based frequency doublers working entirely in the WR-03 band. The chip consumes around 429 mW from a supply voltage of 3.3 V.","PeriodicalId":120932,"journal":{"name":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 0.3-THz SiGe-based frequency doubler chip with 3-dB 50 GHz bandwidth and 17 dB peak conversion gain\",\"authors\":\"Faisal Ahmed, M. Furqan, A. Stelzer\",\"doi\":\"10.23919/EUMIC.2017.8230678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a broadband frequency doubler chip working in the WR-03 band (220–325 GHz). The chip is implemented in a 130-nm SiGe BiCMOS technology with an of 250/300 GHz. It consists of an integrated high-gain wideband amplifier to drive the frequency doubler. The doubler is based on a cascode push-push topology. Conversion loss of the doubler is reduced by utilizing an inductive feedback in the common-base stage. A very wideband operation of the doubler is achieved using optimally sized transistors and 4-reactance based input matching network. On-wafer measurement of the chip shows a state-of-the-art 17.4 dB peak conversion gain at 270 GHz. It delivers a maximum output power of almost 1 mW with a 3-dB bandwidth ranging from 257 GHz to 307 GHz, which is the highest bandwidth for Si-based frequency doublers working entirely in the WR-03 band. The chip consumes around 429 mW from a supply voltage of 3.3 V.\",\"PeriodicalId\":120932,\"journal\":{\"name\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMIC.2017.8230678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2017.8230678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种工作在WR-03频段(220-325 GHz)的宽带倍频芯片。该芯片采用130纳米SiGe BiCMOS技术,频率为250/300 GHz。它由一个集成的高增益宽带放大器驱动倍频器组成。倍频器基于级联码推-推拓扑。通过在共基级利用电感反馈来降低倍频器的转换损耗。使用最佳尺寸的晶体管和基于4电抗的输入匹配网络实现了倍频器的宽带操作。晶圆上测量显示,该芯片在270 GHz时的峰值转换增益为17.4 dB。它提供近1 mW的最大输出功率,3db带宽范围为257 GHz至307 GHz,这是完全在WR-03频段工作的硅基倍频器的最高带宽。该芯片在3.3 V的供电电压下消耗约429 mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 0.3-THz SiGe-based frequency doubler chip with 3-dB 50 GHz bandwidth and 17 dB peak conversion gain
This paper presents a broadband frequency doubler chip working in the WR-03 band (220–325 GHz). The chip is implemented in a 130-nm SiGe BiCMOS technology with an of 250/300 GHz. It consists of an integrated high-gain wideband amplifier to drive the frequency doubler. The doubler is based on a cascode push-push topology. Conversion loss of the doubler is reduced by utilizing an inductive feedback in the common-base stage. A very wideband operation of the doubler is achieved using optimally sized transistors and 4-reactance based input matching network. On-wafer measurement of the chip shows a state-of-the-art 17.4 dB peak conversion gain at 270 GHz. It delivers a maximum output power of almost 1 mW with a 3-dB bandwidth ranging from 257 GHz to 307 GHz, which is the highest bandwidth for Si-based frequency doublers working entirely in the WR-03 band. The chip consumes around 429 mW from a supply voltage of 3.3 V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信