Sk. Shariful Islam Arafat, Md Shakil Hossain, Md. Mahmudul Hasan, S. M. A. Imam, Md. Mofijul Islam, Sanjay Saha, Swakkhar Shatabda, Tamanna Islam Juthi
{"title":"VIM:用于数据可视化和知识挖掘的大数据分析工具","authors":"Sk. Shariful Islam Arafat, Md Shakil Hossain, Md. Mahmudul Hasan, S. M. A. Imam, Md. Mofijul Islam, Sanjay Saha, Swakkhar Shatabda, Tamanna Islam Juthi","doi":"10.1109/WIECON-ECE.2017.8468939","DOIUrl":null,"url":null,"abstract":"With the advancement of Information technologies and applications, a copious amount of data is generated, which attracts both the research community to utilize this information for extracting knowledge and the industry for developing the knowledge-based system. Visualization of data, pattern mining from datasets and analyzing data drift for the different features are three highly used applications of machine learning and data science fields. A generic web-based tool integrated with such features will provide prodigious support for preprocessing the dataset and thus extracting accurate information. In this work, we propose such a data visualization tool, named VIM, which is a web-based comprehensive tool for generic data visualization, data preprocessing and mining suitable knowledge with drift analysis of data. Given a dataset, it can envisage the distribution of data with convenient statistical diagrams for different selected features. Moreover, users can employ VIM to generate association rules by selecting multiple features. We have developed VIM using Python Django framework and GraphLab library. We have deployed this tool to make this publicly usable, which can be accessed at http://210.4.73.237:9999/","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VIM: A Big Data Analytics Tool for Data Visualization and Knowledge Mining\",\"authors\":\"Sk. Shariful Islam Arafat, Md Shakil Hossain, Md. Mahmudul Hasan, S. M. A. Imam, Md. Mofijul Islam, Sanjay Saha, Swakkhar Shatabda, Tamanna Islam Juthi\",\"doi\":\"10.1109/WIECON-ECE.2017.8468939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of Information technologies and applications, a copious amount of data is generated, which attracts both the research community to utilize this information for extracting knowledge and the industry for developing the knowledge-based system. Visualization of data, pattern mining from datasets and analyzing data drift for the different features are three highly used applications of machine learning and data science fields. A generic web-based tool integrated with such features will provide prodigious support for preprocessing the dataset and thus extracting accurate information. In this work, we propose such a data visualization tool, named VIM, which is a web-based comprehensive tool for generic data visualization, data preprocessing and mining suitable knowledge with drift analysis of data. Given a dataset, it can envisage the distribution of data with convenient statistical diagrams for different selected features. Moreover, users can employ VIM to generate association rules by selecting multiple features. We have developed VIM using Python Django framework and GraphLab library. We have deployed this tool to make this publicly usable, which can be accessed at http://210.4.73.237:9999/\",\"PeriodicalId\":188031,\"journal\":{\"name\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIECON-ECE.2017.8468939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VIM: A Big Data Analytics Tool for Data Visualization and Knowledge Mining
With the advancement of Information technologies and applications, a copious amount of data is generated, which attracts both the research community to utilize this information for extracting knowledge and the industry for developing the knowledge-based system. Visualization of data, pattern mining from datasets and analyzing data drift for the different features are three highly used applications of machine learning and data science fields. A generic web-based tool integrated with such features will provide prodigious support for preprocessing the dataset and thus extracting accurate information. In this work, we propose such a data visualization tool, named VIM, which is a web-based comprehensive tool for generic data visualization, data preprocessing and mining suitable knowledge with drift analysis of data. Given a dataset, it can envisage the distribution of data with convenient statistical diagrams for different selected features. Moreover, users can employ VIM to generate association rules by selecting multiple features. We have developed VIM using Python Django framework and GraphLab library. We have deployed this tool to make this publicly usable, which can be accessed at http://210.4.73.237:9999/