便于程序理解的数据挖掘源代码:从c++程序中检索到的聚类数据的实验

Y. Kanellopoulos, Christos Tjortjis
{"title":"便于程序理解的数据挖掘源代码:从c++程序中检索到的聚类数据的实验","authors":"Y. Kanellopoulos, Christos Tjortjis","doi":"10.1109/WPC.2004.1311063","DOIUrl":null,"url":null,"abstract":"This paper presents ongoing work on using data mining to discover knowledge about software systems thus facilitating program comprehension. We discuss how this work fits in the context of tool supported maintenance and comprehension and report on applying a new methodology on C++ programs. The overall framework can provide practical insights and guide the maintainer through the specifics of systems, assuming little familiarity with these. The contribution of this work is two-fold: it provides a model and associated method to extract data from C++ source code which is subsequently to be mined, and evaluates a proposed framework for clustering such data to obtain useful knowledge. The methodology is evaluated on three open source applications, results are assessed and conclusions are presented. This paper concludes with directions for future work.","PeriodicalId":164866,"journal":{"name":"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Data mining source code to facilitate program comprehension: experiments on clustering data retrieved from C++ programs\",\"authors\":\"Y. Kanellopoulos, Christos Tjortjis\",\"doi\":\"10.1109/WPC.2004.1311063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents ongoing work on using data mining to discover knowledge about software systems thus facilitating program comprehension. We discuss how this work fits in the context of tool supported maintenance and comprehension and report on applying a new methodology on C++ programs. The overall framework can provide practical insights and guide the maintainer through the specifics of systems, assuming little familiarity with these. The contribution of this work is two-fold: it provides a model and associated method to extract data from C++ source code which is subsequently to be mined, and evaluates a proposed framework for clustering such data to obtain useful knowledge. The methodology is evaluated on three open source applications, results are assessed and conclusions are presented. This paper concludes with directions for future work.\",\"PeriodicalId\":164866,\"journal\":{\"name\":\"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPC.2004.1311063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPC.2004.1311063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文介绍了正在进行的使用数据挖掘来发现关于软件系统的知识从而促进程序理解的工作。我们讨论了这项工作如何适应工具支持的维护和理解的环境,并报告了在c++程序中应用一种新的方法。总体框架可以提供实用的见解,并指导维护人员了解系统的细节,假设对这些不太熟悉。这项工作的贡献是双重的:它提供了一个模型和相关的方法来从c++源代码中提取随后要挖掘的数据,并评估了一个建议的框架来聚类这些数据以获得有用的知识。在三个开源应用程序上对该方法进行了评估,对结果进行了评估并给出了结论。最后提出了今后工作的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data mining source code to facilitate program comprehension: experiments on clustering data retrieved from C++ programs
This paper presents ongoing work on using data mining to discover knowledge about software systems thus facilitating program comprehension. We discuss how this work fits in the context of tool supported maintenance and comprehension and report on applying a new methodology on C++ programs. The overall framework can provide practical insights and guide the maintainer through the specifics of systems, assuming little familiarity with these. The contribution of this work is two-fold: it provides a model and associated method to extract data from C++ source code which is subsequently to be mined, and evaluates a proposed framework for clustering such data to obtain useful knowledge. The methodology is evaluated on three open source applications, results are assessed and conclusions are presented. This paper concludes with directions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信