基于数据驱动的过热蒸汽温度建模方法

Zhenhao Tang, Mingxuan Yang, Bo Zhao
{"title":"基于数据驱动的过热蒸汽温度建模方法","authors":"Zhenhao Tang, Mingxuan Yang, Bo Zhao","doi":"10.1109/CCDC.2018.8407708","DOIUrl":null,"url":null,"abstract":"Superheated steam temperature is a vital factor that affects the power generation efficiency. A data-driven based approach is proposed to modeling the superheated steam temperature. The ReliefF algorithm is employed to select the input features. In addition, a back propagation neural network(BP) model with parameters optimized by genetic algorithm (GA) is proposed to constructed the prediction model. Experiment results demonstrate that the proposed method can get better forecasting results in comparison with the PSO-BP(particle swarm optimized back propagation neural network), linear regression approach and the MLP(multi-layer perceptron) approach.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling the superheated steam temperature with a data-driven based approach\",\"authors\":\"Zhenhao Tang, Mingxuan Yang, Bo Zhao\",\"doi\":\"10.1109/CCDC.2018.8407708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superheated steam temperature is a vital factor that affects the power generation efficiency. A data-driven based approach is proposed to modeling the superheated steam temperature. The ReliefF algorithm is employed to select the input features. In addition, a back propagation neural network(BP) model with parameters optimized by genetic algorithm (GA) is proposed to constructed the prediction model. Experiment results demonstrate that the proposed method can get better forecasting results in comparison with the PSO-BP(particle swarm optimized back propagation neural network), linear regression approach and the MLP(multi-layer perceptron) approach.\",\"PeriodicalId\":409960,\"journal\":{\"name\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2018.8407708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

过热蒸汽温度是影响发电效率的重要因素。提出了一种基于数据驱动的过热蒸汽温度建模方法。采用ReliefF算法选择输入特征。此外,提出了一种采用遗传算法优化参数的反向传播神经网络(BP)模型来构建预测模型。实验结果表明,与粒子群优化反向传播神经网络(PSO-BP)、线性回归方法和多层感知器(MLP)方法相比,该方法可以获得更好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the superheated steam temperature with a data-driven based approach
Superheated steam temperature is a vital factor that affects the power generation efficiency. A data-driven based approach is proposed to modeling the superheated steam temperature. The ReliefF algorithm is employed to select the input features. In addition, a back propagation neural network(BP) model with parameters optimized by genetic algorithm (GA) is proposed to constructed the prediction model. Experiment results demonstrate that the proposed method can get better forecasting results in comparison with the PSO-BP(particle swarm optimized back propagation neural network), linear regression approach and the MLP(multi-layer perceptron) approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信