头像语义搜索:一种数据库信息检索方法

Eser Kandogan, R. Krishnamurthy, S. Raghavan, Shivakumar Vaithyanathan, Huaiyu Zhu
{"title":"头像语义搜索:一种数据库信息检索方法","authors":"Eser Kandogan, R. Krishnamurthy, S. Raghavan, Shivakumar Vaithyanathan, Huaiyu Zhu","doi":"10.1145/1142473.1142591","DOIUrl":null,"url":null,"abstract":"We present Avatar Semantic Search, a prototype search engine that exploits annotations in the context of classical keyword search. The process of annotations is accomplished offline by using high-precision information extraction techniques to extract facts, con-cepts, and relationships from text. These facts and concepts are represented and indexed in a structured data store. At runtime, keyword queries are interpreted in the context of these extracted facts and converted into one or more precise queries over the structured store. In this demonstration we describe the overall architecture of the Avatar Semantic Search engine. We also demonstrate the superiority of the AVATAR approach over traditional keyword search engines using Enron email data set and a blog corpus.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Avatar semantic search: a database approach to information retrieval\",\"authors\":\"Eser Kandogan, R. Krishnamurthy, S. Raghavan, Shivakumar Vaithyanathan, Huaiyu Zhu\",\"doi\":\"10.1145/1142473.1142591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Avatar Semantic Search, a prototype search engine that exploits annotations in the context of classical keyword search. The process of annotations is accomplished offline by using high-precision information extraction techniques to extract facts, con-cepts, and relationships from text. These facts and concepts are represented and indexed in a structured data store. At runtime, keyword queries are interpreted in the context of these extracted facts and converted into one or more precise queries over the structured store. In this demonstration we describe the overall architecture of the Avatar Semantic Search engine. We also demonstrate the superiority of the AVATAR approach over traditional keyword search engines using Enron email data set and a blog corpus.\",\"PeriodicalId\":416090,\"journal\":{\"name\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2006 ACM SIGMOD international conference on Management of data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1142473.1142591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

我们提出了Avatar语义搜索,这是一个原型搜索引擎,利用经典关键字搜索上下文中的注释。注释过程通过使用高精度信息提取技术从文本中提取事实、概念和关系来离线完成。这些事实和概念在结构化数据存储中表示和索引。在运行时,在这些提取事实的上下文中解释关键字查询,并将其转换为结构化存储上的一个或多个精确查询。在这个演示中,我们描述了Avatar语义搜索引擎的整体架构。我们还使用安然电子邮件数据集和博客语料库证明了AVATAR方法比传统关键字搜索引擎的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Avatar semantic search: a database approach to information retrieval
We present Avatar Semantic Search, a prototype search engine that exploits annotations in the context of classical keyword search. The process of annotations is accomplished offline by using high-precision information extraction techniques to extract facts, con-cepts, and relationships from text. These facts and concepts are represented and indexed in a structured data store. At runtime, keyword queries are interpreted in the context of these extracted facts and converted into one or more precise queries over the structured store. In this demonstration we describe the overall architecture of the Avatar Semantic Search engine. We also demonstrate the superiority of the AVATAR approach over traditional keyword search engines using Enron email data set and a blog corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信