基于多目标优化算法的工业投资组合管理

Tobias Rodemann
{"title":"基于多目标优化算法的工业投资组合管理","authors":"Tobias Rodemann","doi":"10.1109/CEC.2018.8477693","DOIUrl":null,"url":null,"abstract":"In industry we see an increasing interest in (evolutionary) many objective optimization algorithms. However, the majority of engineers only using, not researching, optimizers have a limited understanding of the pros and cons of different algorithms and therefore rely on either third-party recommendations or benchmark tests to pick the most suitable methods for their problems. Unfortunately, most benchmarks are targeting an academic audience leaving the practitioner often in doubt about the correct choices. In this article we try to outline the essential requirements for a many-objective optimization algorithm portfolio management from an industrial perspective and compare the situation in our field to another domain with similar issues, image processing. We want to address one of the core practical issues: “Given a limited computational or time budget for my optimization project, which optimization algorithms should I try?”.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Industrial Portfolio Management for Many-Objective Optimization Algorithms\",\"authors\":\"Tobias Rodemann\",\"doi\":\"10.1109/CEC.2018.8477693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In industry we see an increasing interest in (evolutionary) many objective optimization algorithms. However, the majority of engineers only using, not researching, optimizers have a limited understanding of the pros and cons of different algorithms and therefore rely on either third-party recommendations or benchmark tests to pick the most suitable methods for their problems. Unfortunately, most benchmarks are targeting an academic audience leaving the practitioner often in doubt about the correct choices. In this article we try to outline the essential requirements for a many-objective optimization algorithm portfolio management from an industrial perspective and compare the situation in our field to another domain with similar issues, image processing. We want to address one of the core practical issues: “Given a limited computational or time budget for my optimization project, which optimization algorithms should I try?”.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在工业中,我们看到人们对(进化的)许多目标优化算法越来越感兴趣。然而,大多数工程师只使用优化器,而不是研究优化器,他们对不同算法的优缺点了解有限,因此依赖第三方建议或基准测试来选择最适合他们问题的方法。不幸的是,大多数基准都是针对学术受众的,这使得从业者经常对正确的选择产生怀疑。在本文中,我们试图从工业角度概述多目标优化算法投资组合管理的基本要求,并将我们的领域的情况与另一个具有类似问题的领域进行比较,即图像处理。我们想要解决一个核心的实际问题:“给定我的优化项目有限的计算或时间预算,我应该尝试哪种优化算法?”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industrial Portfolio Management for Many-Objective Optimization Algorithms
In industry we see an increasing interest in (evolutionary) many objective optimization algorithms. However, the majority of engineers only using, not researching, optimizers have a limited understanding of the pros and cons of different algorithms and therefore rely on either third-party recommendations or benchmark tests to pick the most suitable methods for their problems. Unfortunately, most benchmarks are targeting an academic audience leaving the practitioner often in doubt about the correct choices. In this article we try to outline the essential requirements for a many-objective optimization algorithm portfolio management from an industrial perspective and compare the situation in our field to another domain with similar issues, image processing. We want to address one of the core practical issues: “Given a limited computational or time budget for my optimization project, which optimization algorithms should I try?”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信