集成多数据域频繁模式挖掘进行分类

D. Patel, W. Hsu, M. Lee
{"title":"集成多数据域频繁模式挖掘进行分类","authors":"D. Patel, W. Hsu, M. Lee","doi":"10.1109/ICDE.2012.63","DOIUrl":null,"url":null,"abstract":"Many frequent pattern mining algorithms have been developed for categorical, numerical, time series, or interval data. However, little attention has been given to integrate these algorithms so as to mine frequent patterns from multiple domain datasets for classification. In this paper, we introduce the notion of a heterogenous pattern to capture the associations among different kinds of data. We propose a unified framework for mining multiple domain datasets and design an iterative algorithm called HTMiner. HTMiner discovers essential heterogenous patterns for classification and performs instance elimination. This instance elimination step reduces the problem size progressively by removing training instances which are correctly covered by the discovered essential heterogenous pattern. Experiments on two real world datasets show that the HTMiner is efficient and can significantly improve the classification accuracy.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Integrating Frequent Pattern Mining from Multiple Data Domains for Classification\",\"authors\":\"D. Patel, W. Hsu, M. Lee\",\"doi\":\"10.1109/ICDE.2012.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many frequent pattern mining algorithms have been developed for categorical, numerical, time series, or interval data. However, little attention has been given to integrate these algorithms so as to mine frequent patterns from multiple domain datasets for classification. In this paper, we introduce the notion of a heterogenous pattern to capture the associations among different kinds of data. We propose a unified framework for mining multiple domain datasets and design an iterative algorithm called HTMiner. HTMiner discovers essential heterogenous patterns for classification and performs instance elimination. This instance elimination step reduces the problem size progressively by removing training instances which are correctly covered by the discovered essential heterogenous pattern. Experiments on two real world datasets show that the HTMiner is efficient and can significantly improve the classification accuracy.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对于分类、数值、时间序列或区间数据,已经开发了许多频繁模式挖掘算法。然而,如何将这些算法整合起来,从多领域数据集中挖掘出频繁的模式进行分类却鲜有人关注。在本文中,我们引入了异构模式的概念来捕获不同类型数据之间的关联。我们提出了一个统一的多领域数据集挖掘框架,并设计了一个迭代算法HTMiner。HTMiner发现用于分类的基本异构模式,并执行实例消除。实例消除步骤通过去除被发现的基本异构模式正确覆盖的训练实例来逐步减小问题的大小。在两个真实数据集上的实验表明,HTMiner是高效的,可以显著提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Frequent Pattern Mining from Multiple Data Domains for Classification
Many frequent pattern mining algorithms have been developed for categorical, numerical, time series, or interval data. However, little attention has been given to integrate these algorithms so as to mine frequent patterns from multiple domain datasets for classification. In this paper, we introduce the notion of a heterogenous pattern to capture the associations among different kinds of data. We propose a unified framework for mining multiple domain datasets and design an iterative algorithm called HTMiner. HTMiner discovers essential heterogenous patterns for classification and performs instance elimination. This instance elimination step reduces the problem size progressively by removing training instances which are correctly covered by the discovered essential heterogenous pattern. Experiments on two real world datasets show that the HTMiner is efficient and can significantly improve the classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信