{"title":"电动汽车和传统汽车预测最优速度控制的潜力分析","authors":"Ulrich Vogele, C. Endisch","doi":"10.1109/ICVES.2015.7396917","DOIUrl":null,"url":null,"abstract":"Optimizing the velocity of a vehicle over a known future route can reduce fuel consumption. This article studies the potential fuel-savings of such systems for conventional vehicles, employing an internal combustion engine, and its application to electric vehicles. A main drawback of many optimization algorithms is their computational complexity, which prevents them from being used in real-time applications. To overcome this drawback a fast algorithm is presented to optimize the velocity of a vehicle with known route slope. Using this algorithm the consumption for five real world scenarios is simulated and compared against a constant velocity policy. The results achieved for the conventional vehicle are comparable to real-world results reported in other articles and offer about 20% fuel saving using free-wheeling compared to driving with a constant velocity. For electric vehicles the consumption savings, which can be achieved using free-wheeling lie around 3.5%.","PeriodicalId":325462,"journal":{"name":"2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Potential analysis of predictive optimal velocity control for electric and conventional vehicles\",\"authors\":\"Ulrich Vogele, C. Endisch\",\"doi\":\"10.1109/ICVES.2015.7396917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing the velocity of a vehicle over a known future route can reduce fuel consumption. This article studies the potential fuel-savings of such systems for conventional vehicles, employing an internal combustion engine, and its application to electric vehicles. A main drawback of many optimization algorithms is their computational complexity, which prevents them from being used in real-time applications. To overcome this drawback a fast algorithm is presented to optimize the velocity of a vehicle with known route slope. Using this algorithm the consumption for five real world scenarios is simulated and compared against a constant velocity policy. The results achieved for the conventional vehicle are comparable to real-world results reported in other articles and offer about 20% fuel saving using free-wheeling compared to driving with a constant velocity. For electric vehicles the consumption savings, which can be achieved using free-wheeling lie around 3.5%.\",\"PeriodicalId\":325462,\"journal\":{\"name\":\"2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2015.7396917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2015.7396917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Potential analysis of predictive optimal velocity control for electric and conventional vehicles
Optimizing the velocity of a vehicle over a known future route can reduce fuel consumption. This article studies the potential fuel-savings of such systems for conventional vehicles, employing an internal combustion engine, and its application to electric vehicles. A main drawback of many optimization algorithms is their computational complexity, which prevents them from being used in real-time applications. To overcome this drawback a fast algorithm is presented to optimize the velocity of a vehicle with known route slope. Using this algorithm the consumption for five real world scenarios is simulated and compared against a constant velocity policy. The results achieved for the conventional vehicle are comparable to real-world results reported in other articles and offer about 20% fuel saving using free-wheeling compared to driving with a constant velocity. For electric vehicles the consumption savings, which can be achieved using free-wheeling lie around 3.5%.