利用自动摘要改进文本分类的性能

Xiao-yu Jiang, Xiao-zhong Fan, Zhi-Fei Wang, Ke-liang Jia
{"title":"利用自动摘要改进文本分类的性能","authors":"Xiao-yu Jiang, Xiao-zhong Fan, Zhi-Fei Wang, Ke-liang Jia","doi":"10.1109/ICCMS.2009.29","DOIUrl":null,"url":null,"abstract":"In order to reduce the dimensionality of feature vector space and reduce the computing complexity of categorization, each document of the train set is summarized automatically and two approaches to text categorization based on these summaries are proposed: in the first approach, the text summarization is directly used for feature selection and categorization instead of the original text; in the second approach, each summary is used to select and weight features for each document, and free texts are classified using KNN algorithm. Experimental results show that the two proposed methods using automatic summarization can not only reduce the time of classifier training, but also improve the performance of text categorization.","PeriodicalId":325964,"journal":{"name":"2009 International Conference on Computer Modeling and Simulation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Improving the Performance of Text Categorization Using Automatic Summarization\",\"authors\":\"Xiao-yu Jiang, Xiao-zhong Fan, Zhi-Fei Wang, Ke-liang Jia\",\"doi\":\"10.1109/ICCMS.2009.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce the dimensionality of feature vector space and reduce the computing complexity of categorization, each document of the train set is summarized automatically and two approaches to text categorization based on these summaries are proposed: in the first approach, the text summarization is directly used for feature selection and categorization instead of the original text; in the second approach, each summary is used to select and weight features for each document, and free texts are classified using KNN algorithm. Experimental results show that the two proposed methods using automatic summarization can not only reduce the time of classifier training, but also improve the performance of text categorization.\",\"PeriodicalId\":325964,\"journal\":{\"name\":\"2009 International Conference on Computer Modeling and Simulation\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computer Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMS.2009.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

为了降低特征向量空间的维数,降低分类的计算复杂度,对训练集的每个文档进行自动摘要,提出了两种基于这些摘要的文本分类方法:第一种方法是直接使用文本摘要代替原始文本进行特征选择和分类;在第二种方法中,使用每个摘要来选择和加权每个文档的特征,并使用KNN算法对自由文本进行分类。实验结果表明,本文提出的两种自动摘要方法不仅可以减少分类器的训练时间,而且可以提高文本分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Performance of Text Categorization Using Automatic Summarization
In order to reduce the dimensionality of feature vector space and reduce the computing complexity of categorization, each document of the train set is summarized automatically and two approaches to text categorization based on these summaries are proposed: in the first approach, the text summarization is directly used for feature selection and categorization instead of the original text; in the second approach, each summary is used to select and weight features for each document, and free texts are classified using KNN algorithm. Experimental results show that the two proposed methods using automatic summarization can not only reduce the time of classifier training, but also improve the performance of text categorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信