Krein空间中的紧j坐标系和相关的j坐标系势

S. M. Hossein, S. Karmakar, K. Paul
{"title":"Krein空间中的紧j坐标系和相关的j坐标系势","authors":"S. M. Hossein, S. Karmakar, K. Paul","doi":"10.12988/ijma.2016.6355","DOIUrl":null,"url":null,"abstract":"Motivated by the idea of $J$-frame for a Krein space $\\textbf{\\textit{K}}$, introduced by Giribet \\textit{et al.} (J. I. Giribet, A. Maestripieri, F. Mart\\'inez Per\\'{i}a, P. G. Massey, \\textit{On frames for Krein spaces}, J. Math. Anal. Appl. (1), {\\bf 393} (2012), 122--137.), we introduce the notion of $\\zeta-J$-tight frame for a Krein space $\\textbf{\\textit{K}}$. In this paper we characterize $J$-orthonormal basis for $\\textbf{\\textit{K}}$ in terms of $\\zeta-J$-Parseval frame. We show that a Krein space is richly supplied with $\\zeta-J$-Parseval frames. We also provide a necessary and sufficient condition when the linear sum of two $\\zeta-J$-Parseval frames is again a $\\zeta-J$-Parseval frame. We then generalize the notion of $J$-frame potential in Krein space from Hilbert space frame theory. Finally we provided a necessary and sufficient condition for a $J$-frame potential of the corresponding $\\zeta-J$-tight frame to be minimum.","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Tight J-frames in Krein space and the associated J-frame potential\",\"authors\":\"S. M. Hossein, S. Karmakar, K. Paul\",\"doi\":\"10.12988/ijma.2016.6355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the idea of $J$-frame for a Krein space $\\\\textbf{\\\\textit{K}}$, introduced by Giribet \\\\textit{et al.} (J. I. Giribet, A. Maestripieri, F. Mart\\\\'inez Per\\\\'{i}a, P. G. Massey, \\\\textit{On frames for Krein spaces}, J. Math. Anal. Appl. (1), {\\\\bf 393} (2012), 122--137.), we introduce the notion of $\\\\zeta-J$-tight frame for a Krein space $\\\\textbf{\\\\textit{K}}$. In this paper we characterize $J$-orthonormal basis for $\\\\textbf{\\\\textit{K}}$ in terms of $\\\\zeta-J$-Parseval frame. We show that a Krein space is richly supplied with $\\\\zeta-J$-Parseval frames. We also provide a necessary and sufficient condition when the linear sum of two $\\\\zeta-J$-Parseval frames is again a $\\\\zeta-J$-Parseval frame. We then generalize the notion of $J$-frame potential in Krein space from Hilbert space frame theory. Finally we provided a necessary and sufficient condition for a $J$-frame potential of the corresponding $\\\\zeta-J$-tight frame to be minimum.\",\"PeriodicalId\":431531,\"journal\":{\"name\":\"International Journal of Mathematical Analysis\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/ijma.2016.6355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/ijma.2016.6355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由Krein空间的$J$ -框架的想法驱动$\textbf{\textit{K}}$,由Giribet\textit{等人}介绍(J. I. Giribet, a . Maestripieri, F. Martínez Pería, P. G. Massey, \textit{On frames for Krein空间},J. Math。分析的苹果。(1), {\bf393}(2012), 122—137.),我们引入了Krein空间$\textbf{\textit{K}}$的$\zeta-J$ -紧框架的概念。本文用$\zeta-J$ -Parseval框架刻画了$\textbf{\textit{K}}$的$J$ -标准正交基。我们证明了Krein空间具有丰富的$\zeta-J$ -Parseval框架。给出了两个$\zeta-J$ -Parseval系的线性和再次为$\zeta-J$ -Parseval系的充要条件。然后从Hilbert空间框架理论推广了Krein空间中$J$ -框架势的概念。最后给出了相应的$\zeta-J$紧框架的$J$ -框架势最小的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight J-frames in Krein space and the associated J-frame potential
Motivated by the idea of $J$-frame for a Krein space $\textbf{\textit{K}}$, introduced by Giribet \textit{et al.} (J. I. Giribet, A. Maestripieri, F. Mart\'inez Per\'{i}a, P. G. Massey, \textit{On frames for Krein spaces}, J. Math. Anal. Appl. (1), {\bf 393} (2012), 122--137.), we introduce the notion of $\zeta-J$-tight frame for a Krein space $\textbf{\textit{K}}$. In this paper we characterize $J$-orthonormal basis for $\textbf{\textit{K}}$ in terms of $\zeta-J$-Parseval frame. We show that a Krein space is richly supplied with $\zeta-J$-Parseval frames. We also provide a necessary and sufficient condition when the linear sum of two $\zeta-J$-Parseval frames is again a $\zeta-J$-Parseval frame. We then generalize the notion of $J$-frame potential in Krein space from Hilbert space frame theory. Finally we provided a necessary and sufficient condition for a $J$-frame potential of the corresponding $\zeta-J$-tight frame to be minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信