R. Abbasi, M. Moradi, Seyyedeh Fatemeh Molaeezadeh
{"title":"利用多重模糊函数长期预测血压时间序列","authors":"R. Abbasi, M. Moradi, Seyyedeh Fatemeh Molaeezadeh","doi":"10.1109/ICBME.2014.7043906","DOIUrl":null,"url":null,"abstract":"Long-term prediction of mean arterial blood pressure (MAP) time series can help clinicians to select a proper treatment based on their diagnosis. In this way, this paper firstly introduces a new prediction method for time series prediction based on fuzzy functions (FF) in multi-model mode and applies it for forecasting MAP time series as a new application. The proposed model consists of three steps. First step is to estimate the missing values in MAP time series by a linear interpolation method and to denoise it by using the empirical mode decomposition (EMD) procedure. Second step is to reconstruct the phase space. Last step is to apply a predictive model based on fuzzy functions (FFs). This model consists of two parts: 1) identifying the model structure by Gustafson-Kessel (GK) clustering and 2) estimating the output of each cluster by multivariate adaptive regression splines (MARS). Results show that, the proposed FF-based MARS model is more accurate than ANFIS and FF-based ANFIS, and its results are in the range of standard values. Beside, by using different strategies for long-term prediction, multiple FF-based MARS models has best result in comparison to recursive and multiple-recursive strategies.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Long-term prediction of blood pressure time series using multiple fuzzy functions\",\"authors\":\"R. Abbasi, M. Moradi, Seyyedeh Fatemeh Molaeezadeh\",\"doi\":\"10.1109/ICBME.2014.7043906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Long-term prediction of mean arterial blood pressure (MAP) time series can help clinicians to select a proper treatment based on their diagnosis. In this way, this paper firstly introduces a new prediction method for time series prediction based on fuzzy functions (FF) in multi-model mode and applies it for forecasting MAP time series as a new application. The proposed model consists of three steps. First step is to estimate the missing values in MAP time series by a linear interpolation method and to denoise it by using the empirical mode decomposition (EMD) procedure. Second step is to reconstruct the phase space. Last step is to apply a predictive model based on fuzzy functions (FFs). This model consists of two parts: 1) identifying the model structure by Gustafson-Kessel (GK) clustering and 2) estimating the output of each cluster by multivariate adaptive regression splines (MARS). Results show that, the proposed FF-based MARS model is more accurate than ANFIS and FF-based ANFIS, and its results are in the range of standard values. Beside, by using different strategies for long-term prediction, multiple FF-based MARS models has best result in comparison to recursive and multiple-recursive strategies.\",\"PeriodicalId\":434822,\"journal\":{\"name\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2014.7043906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-term prediction of blood pressure time series using multiple fuzzy functions
Long-term prediction of mean arterial blood pressure (MAP) time series can help clinicians to select a proper treatment based on their diagnosis. In this way, this paper firstly introduces a new prediction method for time series prediction based on fuzzy functions (FF) in multi-model mode and applies it for forecasting MAP time series as a new application. The proposed model consists of three steps. First step is to estimate the missing values in MAP time series by a linear interpolation method and to denoise it by using the empirical mode decomposition (EMD) procedure. Second step is to reconstruct the phase space. Last step is to apply a predictive model based on fuzzy functions (FFs). This model consists of two parts: 1) identifying the model structure by Gustafson-Kessel (GK) clustering and 2) estimating the output of each cluster by multivariate adaptive regression splines (MARS). Results show that, the proposed FF-based MARS model is more accurate than ANFIS and FF-based ANFIS, and its results are in the range of standard values. Beside, by using different strategies for long-term prediction, multiple FF-based MARS models has best result in comparison to recursive and multiple-recursive strategies.