使用海绵的广义形态学

J. V. D. Gronde, J. Roerdink
{"title":"使用海绵的广义形态学","authors":"J. V. D. Gronde, J. Roerdink","doi":"10.1515/mathm-2016-0002","DOIUrl":null,"url":null,"abstract":"Abstract Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Generalized Morphology using Sponges\",\"authors\":\"J. V. D. Gronde, J. Roerdink\",\"doi\":\"10.1515/mathm-2016-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are.\",\"PeriodicalId\":244328,\"journal\":{\"name\":\"Mathematical Morphology - Theory and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Morphology - Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mathm-2016-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2016-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数学形态学传统上是以格理论为基础的。然而,对于非标量数据,格通常被证明过于严格。在本文中,我们提出了一个更一般的替代方案,海绵,它仍然允许从形态学理论中对各种性质和概念进行有用的定义。事实证明,在这个新框架中,一些关于非标量数据的“伪形态学”的现有工作实际上可以被认为是“适当的”数学形态学,而其他工作则不能,这与一些结果运算符的有用/直观程度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Morphology using Sponges
Abstract Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信