使用Naïve贝叶斯分类器的域间链接推理

Yi Zhao, Yan Liu, Xiaoyu Guo, ZhongHang Sui
{"title":"使用Naïve贝叶斯分类器的域间链接推理","authors":"Yi Zhao, Yan Liu, Xiaoyu Guo, ZhongHang Sui","doi":"10.1145/3457682.3457715","DOIUrl":null,"url":null,"abstract":"Inter-domain link inference is not only important for network security and fault diagnosis, but also helps to conduct research on inter-domain congestion detection and network resilience assessment. Current researches on this issue lack confidence analysis of the inferred results. In this paper, the IP link types (i.e., intra-domain link and inter-domain link) are considered as the latent variable in probability model, while the parameters are probabilities of different link types with particular features. The expectation maximization algorithm is applied to estimate parameters of the model. In each iteration of EM algorithm, Naïve Bayes is used for classification. The final result is determined according to the probability, and the probability is the confidence of the result. The experimental results show that our method can achieve better precision and recall on the validation set than two existing general methods.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-domain Link Inference with Confidence Using Naïve Bayes Classifier\",\"authors\":\"Yi Zhao, Yan Liu, Xiaoyu Guo, ZhongHang Sui\",\"doi\":\"10.1145/3457682.3457715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-domain link inference is not only important for network security and fault diagnosis, but also helps to conduct research on inter-domain congestion detection and network resilience assessment. Current researches on this issue lack confidence analysis of the inferred results. In this paper, the IP link types (i.e., intra-domain link and inter-domain link) are considered as the latent variable in probability model, while the parameters are probabilities of different link types with particular features. The expectation maximization algorithm is applied to estimate parameters of the model. In each iteration of EM algorithm, Naïve Bayes is used for classification. The final result is determined according to the probability, and the probability is the confidence of the result. The experimental results show that our method can achieve better precision and recall on the validation set than two existing general methods.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

域间链路推理不仅对网络安全和故障诊断具有重要意义,而且有助于进行域间拥塞检测和网络弹性评估的研究。目前对这一问题的研究缺乏对推断结果的置信度分析。本文将IP链路类型(即域内链路和域间链路)作为概率模型的潜在变量,参数为具有特定特征的不同链路类型的概率。采用期望最大化算法对模型参数进行估计。在EM算法的每次迭代中,都使用Naïve贝叶斯进行分类。最终的结果是根据概率决定的,而概率就是对结果的置信度。实验结果表明,该方法在验证集上的查全率和查全率优于现有的两种一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-domain Link Inference with Confidence Using Naïve Bayes Classifier
Inter-domain link inference is not only important for network security and fault diagnosis, but also helps to conduct research on inter-domain congestion detection and network resilience assessment. Current researches on this issue lack confidence analysis of the inferred results. In this paper, the IP link types (i.e., intra-domain link and inter-domain link) are considered as the latent variable in probability model, while the parameters are probabilities of different link types with particular features. The expectation maximization algorithm is applied to estimate parameters of the model. In each iteration of EM algorithm, Naïve Bayes is used for classification. The final result is determined according to the probability, and the probability is the confidence of the result. The experimental results show that our method can achieve better precision and recall on the validation set than two existing general methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信