利用柔性梁二次弯曲模式的大行程恒力机构:评估指标和设计方法

Fulei Ma, Guimin Chen, Wang Haitian
{"title":"利用柔性梁二次弯曲模式的大行程恒力机构:评估指标和设计方法","authors":"Fulei Ma, Guimin Chen, Wang Haitian","doi":"10.1115/detc2019-97813","DOIUrl":null,"url":null,"abstract":"\n Compliant constant-force mechanisms (CCFMs), which provide a near constant force output over a range of displacement, can benefit many applications. This work proposes a novel large-stroke CCFM (abbreviated as B2CCFM) that utilizes the second bending mode of flexible beams. Two general nondimensionalized metrics, one describing the variation of output force and the other describing the operational displacement, are proposed to effectively characterize the performances of various CCFMs. Based on the general metrics, design formulas that can help designers quickly find suitable B2CCFM design for a specific application are obtained. A kinetostatic model for B2CCFM is also provided based on the chained beam constrain model (CBCM) to verify B2CCFM designs. An example accompanied with a prototype is presented to verify this novel CCFM and the effectiveness of the design formulas. The experimental results show that the B2CCFM example outputs a constant-force in a range as large as 45% of the beam length with variation less than 4.7%. The nondimensionalized metrics were demonstrated in comparison of several CCFMs, and the comparison results show the superior performances of B2CCFMs.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Large-Stroke Constant-Force Mechanisms Utilizing Second Bending Mode of Flexible Beams: Evaluation Metrics and Design Approach\",\"authors\":\"Fulei Ma, Guimin Chen, Wang Haitian\",\"doi\":\"10.1115/detc2019-97813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Compliant constant-force mechanisms (CCFMs), which provide a near constant force output over a range of displacement, can benefit many applications. This work proposes a novel large-stroke CCFM (abbreviated as B2CCFM) that utilizes the second bending mode of flexible beams. Two general nondimensionalized metrics, one describing the variation of output force and the other describing the operational displacement, are proposed to effectively characterize the performances of various CCFMs. Based on the general metrics, design formulas that can help designers quickly find suitable B2CCFM design for a specific application are obtained. A kinetostatic model for B2CCFM is also provided based on the chained beam constrain model (CBCM) to verify B2CCFM designs. An example accompanied with a prototype is presented to verify this novel CCFM and the effectiveness of the design formulas. The experimental results show that the B2CCFM example outputs a constant-force in a range as large as 45% of the beam length with variation less than 4.7%. The nondimensionalized metrics were demonstrated in comparison of several CCFMs, and the comparison results show the superior performances of B2CCFMs.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

柔性恒力机构(CCFMs)在一定的位移范围内提供接近恒定的力输出,可以使许多应用受益。本文提出了一种利用柔性梁二次弯曲模态的新型大行程CCFM(简称B2CCFM)。提出了两个通用的无量纲化指标,一个描述输出力的变化,另一个描述操作位移,以有效地表征各种CCFMs的性能。基于一般的度量,得到了可以帮助设计人员快速找到适合特定应用的B2CCFM设计的设计公式。基于链梁约束模型(CBCM)建立了B2CCFM的动静态模型,验证了B2CCFM的设计。最后通过一个算例和样机验证了该方法的有效性。实验结果表明,B2CCFM示例在梁长45%的范围内输出恒定力,变化小于4.7%。通过对几种CCFMs的非量纲化度量进行比较,结果表明B2CCFMs具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Stroke Constant-Force Mechanisms Utilizing Second Bending Mode of Flexible Beams: Evaluation Metrics and Design Approach
Compliant constant-force mechanisms (CCFMs), which provide a near constant force output over a range of displacement, can benefit many applications. This work proposes a novel large-stroke CCFM (abbreviated as B2CCFM) that utilizes the second bending mode of flexible beams. Two general nondimensionalized metrics, one describing the variation of output force and the other describing the operational displacement, are proposed to effectively characterize the performances of various CCFMs. Based on the general metrics, design formulas that can help designers quickly find suitable B2CCFM design for a specific application are obtained. A kinetostatic model for B2CCFM is also provided based on the chained beam constrain model (CBCM) to verify B2CCFM designs. An example accompanied with a prototype is presented to verify this novel CCFM and the effectiveness of the design formulas. The experimental results show that the B2CCFM example outputs a constant-force in a range as large as 45% of the beam length with variation less than 4.7%. The nondimensionalized metrics were demonstrated in comparison of several CCFMs, and the comparison results show the superior performances of B2CCFMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信