具有选择性权重更新的设备上增量学习系统的实用方法

Jaekang Shin, Seungkyu Choi, Yeongjae Choi, L. Kim
{"title":"具有选择性权重更新的设备上增量学习系统的实用方法","authors":"Jaekang Shin, Seungkyu Choi, Yeongjae Choi, L. Kim","doi":"10.1109/DAC18072.2020.9218507","DOIUrl":null,"url":null,"abstract":"Incremental learning is drawing attention to widen capabilities of device-AI. Previous works have researched to reduce numerous computations and memory accesses required for the training process of IL, but they could not show a noticeable improvement in the weight gradient computation (WGC) phase. Therefore, we propose a selective weight update technique that searches for critical weights to be updated by applying the IL algorithm that training per-task binary masks. Also, we introduce a novel dataflow for the implementation of selective WGC on typical NPUs with minimum overheads. On average, our system shows a 2.9× speed up and 2.5× energy efficiency in WGC without degrading training quality.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Pragmatic Approach to On-device Incremental Learning System with Selective Weight Updates\",\"authors\":\"Jaekang Shin, Seungkyu Choi, Yeongjae Choi, L. Kim\",\"doi\":\"10.1109/DAC18072.2020.9218507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental learning is drawing attention to widen capabilities of device-AI. Previous works have researched to reduce numerous computations and memory accesses required for the training process of IL, but they could not show a noticeable improvement in the weight gradient computation (WGC) phase. Therefore, we propose a selective weight update technique that searches for critical weights to be updated by applying the IL algorithm that training per-task binary masks. Also, we introduce a novel dataflow for the implementation of selective WGC on typical NPUs with minimum overheads. On average, our system shows a 2.9× speed up and 2.5× energy efficiency in WGC without degrading training quality.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

渐进式学习正在引起人们对扩大设备人工智能能力的关注。以前的工作已经研究了减少IL训练过程中所需的大量计算和内存访问,但在权重梯度计算(weight gradient computation, WGC)阶段没有显示出明显的改善。因此,我们提出了一种选择性权重更新技术,该技术通过应用训练每任务二进制掩码的IL算法来搜索需要更新的关键权重。此外,我们还引入了一种新的数据流,用于在典型npu上以最小的开销实现选择性WGC。在不影响训练质量的情况下,我们的系统在WGC中平均表现出2.9倍的速度提升和2.5倍的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pragmatic Approach to On-device Incremental Learning System with Selective Weight Updates
Incremental learning is drawing attention to widen capabilities of device-AI. Previous works have researched to reduce numerous computations and memory accesses required for the training process of IL, but they could not show a noticeable improvement in the weight gradient computation (WGC) phase. Therefore, we propose a selective weight update technique that searches for critical weights to be updated by applying the IL algorithm that training per-task binary masks. Also, we introduce a novel dataflow for the implementation of selective WGC on typical NPUs with minimum overheads. On average, our system shows a 2.9× speed up and 2.5× energy efficiency in WGC without degrading training quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信