基于MALLET的网络新闻情感分析

S. Fong, Yan Zhuang, Jinyan Li, R. Khoury
{"title":"基于MALLET的网络新闻情感分析","authors":"S. Fong, Yan Zhuang, Jinyan Li, R. Khoury","doi":"10.1109/ISCBI.2013.67","DOIUrl":null,"url":null,"abstract":"The challenge of sentiment analysis consists in automatically determining whether a text is positive or negative in tone. Part of the difficulty in this task stems from the fact that the same words or sentences can have very different sentimental meaning given their context. In our work, we further focus on news articles, which tend to use a more neutral vocabulary, as opposed to the emotionally charged vocabulary of opinion pieces such as editorials, reviews, and blogs. In this paper, we use MALLET (Machine Learning for Language Toolkit) to implement and train several algorithms for sentiment analysis, and run experiments to compare and contrast them.","PeriodicalId":311471,"journal":{"name":"2013 International Symposium on Computational and Business Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Sentiment Analysis of Online News Using MALLET\",\"authors\":\"S. Fong, Yan Zhuang, Jinyan Li, R. Khoury\",\"doi\":\"10.1109/ISCBI.2013.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge of sentiment analysis consists in automatically determining whether a text is positive or negative in tone. Part of the difficulty in this task stems from the fact that the same words or sentences can have very different sentimental meaning given their context. In our work, we further focus on news articles, which tend to use a more neutral vocabulary, as opposed to the emotionally charged vocabulary of opinion pieces such as editorials, reviews, and blogs. In this paper, we use MALLET (Machine Learning for Language Toolkit) to implement and train several algorithms for sentiment analysis, and run experiments to compare and contrast them.\",\"PeriodicalId\":311471,\"journal\":{\"name\":\"2013 International Symposium on Computational and Business Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Symposium on Computational and Business Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCBI.2013.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Computational and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2013.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

情感分析的挑战在于自动确定文本的语气是积极还是消极。这项任务的部分困难源于这样一个事实,即相同的单词或句子在不同的语境下可能具有截然不同的情感含义。在我们的工作中,我们进一步关注新闻文章,这些文章倾向于使用更中性的词汇,而不是社论、评论和博客等观点文章中充满情感的词汇。在本文中,我们使用MALLET (Machine Learning for Language Toolkit)来实现和训练几种情感分析算法,并运行实验来比较和对比它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment Analysis of Online News Using MALLET
The challenge of sentiment analysis consists in automatically determining whether a text is positive or negative in tone. Part of the difficulty in this task stems from the fact that the same words or sentences can have very different sentimental meaning given their context. In our work, we further focus on news articles, which tend to use a more neutral vocabulary, as opposed to the emotionally charged vocabulary of opinion pieces such as editorials, reviews, and blogs. In this paper, we use MALLET (Machine Learning for Language Toolkit) to implement and train several algorithms for sentiment analysis, and run experiments to compare and contrast them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信