基于粗糙集的Web搜索结果聚类方法

Chi Lang Ngo, H. Nguyen
{"title":"基于粗糙集的Web搜索结果聚类方法","authors":"Chi Lang Ngo, H. Nguyen","doi":"10.1109/WI.2005.7","DOIUrl":null,"url":null,"abstract":"Due to the enormous size of the Web and low precision of user queries, finding the right information from the Web can be difficult if not impossible. One approach that tries to solve this problem is using clustering techniques for grouping similar document together in order to facilitate presentation of results in more compact form and enable thematic browsing of the results set. The main problem of many Web search result (snippet) clustering algorithm is based on the poor vector representation of snippets. In this paper, we present a method of snippet representation enrichment using tolerance rough set model. We applied the proposed method to construct a rough set based search result clustering algorithm and compared it with other recent methods.","PeriodicalId":213856,"journal":{"name":"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"A method of Web search result clustering based on rough sets\",\"authors\":\"Chi Lang Ngo, H. Nguyen\",\"doi\":\"10.1109/WI.2005.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the enormous size of the Web and low precision of user queries, finding the right information from the Web can be difficult if not impossible. One approach that tries to solve this problem is using clustering techniques for grouping similar document together in order to facilitate presentation of results in more compact form and enable thematic browsing of the results set. The main problem of many Web search result (snippet) clustering algorithm is based on the poor vector representation of snippets. In this paper, we present a method of snippet representation enrichment using tolerance rough set model. We applied the proposed method to construct a rough set based search result clustering algorithm and compared it with other recent methods.\",\"PeriodicalId\":213856,\"journal\":{\"name\":\"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2005.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2005.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

由于Web的巨大规模和用户查询的低精度,从Web中找到正确的信息即使不是不可能,也是很困难的。试图解决这个问题的一种方法是使用聚类技术将类似的文档分组在一起,以便以更紧凑的形式表示结果,并支持对结果集进行主题浏览。许多Web搜索结果(代码片段)聚类算法的主要问题是基于代码片段较差的向量表示。本文提出了一种基于容差粗糙集模型的片段表示富集方法。应用该方法构造了一种基于粗糙集的搜索结果聚类算法,并与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method of Web search result clustering based on rough sets
Due to the enormous size of the Web and low precision of user queries, finding the right information from the Web can be difficult if not impossible. One approach that tries to solve this problem is using clustering techniques for grouping similar document together in order to facilitate presentation of results in more compact form and enable thematic browsing of the results set. The main problem of many Web search result (snippet) clustering algorithm is based on the poor vector representation of snippets. In this paper, we present a method of snippet representation enrichment using tolerance rough set model. We applied the proposed method to construct a rough set based search result clustering algorithm and compared it with other recent methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信