部分编号和预完备性

D. Spreen
{"title":"部分编号和预完备性","authors":"D. Spreen","doi":"10.1515/9781614518044.325","DOIUrl":null,"url":null,"abstract":"Precompleteness is a powerful property of numberings. Most numberings commonly used in computability theory such as the Godel numberings of the partial computable functions are precomplete. As is well known, exactly the precomplete numberings have the effective fixed point property. In this paper extensions of precompleteness to partial numberings are discussed. As is shown, most of the important properties shared by precomplete numberings carry over to the partial case.","PeriodicalId":359337,"journal":{"name":"Logic, Computation, Hierarchies","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Partial Numberings and Precompleteness\",\"authors\":\"D. Spreen\",\"doi\":\"10.1515/9781614518044.325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precompleteness is a powerful property of numberings. Most numberings commonly used in computability theory such as the Godel numberings of the partial computable functions are precomplete. As is well known, exactly the precomplete numberings have the effective fixed point property. In this paper extensions of precompleteness to partial numberings are discussed. As is shown, most of the important properties shared by precomplete numberings carry over to the partial case.\",\"PeriodicalId\":359337,\"journal\":{\"name\":\"Logic, Computation, Hierarchies\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic, Computation, Hierarchies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9781614518044.325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic, Computation, Hierarchies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9781614518044.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

完备性是数的一个强大特性。在可计算性理论中常用的大多数编号,如部分可计算函数的哥德尔编号,都是预完全的。众所周知,精确的预完备编号具有有效不动点性质。本文讨论了部分数的预完备性的推广。如所示,预完成编号共享的大多数重要属性都延续到部分情况中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Numberings and Precompleteness
Precompleteness is a powerful property of numberings. Most numberings commonly used in computability theory such as the Godel numberings of the partial computable functions are precomplete. As is well known, exactly the precomplete numberings have the effective fixed point property. In this paper extensions of precompleteness to partial numberings are discussed. As is shown, most of the important properties shared by precomplete numberings carry over to the partial case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信