基于级联支持向量机和高斯混合模型的航空图像车辆自动检测

Shibani Hamsa, A. Panthakkan, S. Al-Mansoori, Husain Alahamed
{"title":"基于级联支持向量机和高斯混合模型的航空图像车辆自动检测","authors":"Shibani Hamsa, A. Panthakkan, S. Al-Mansoori, Husain Alahamed","doi":"10.1109/CSPIS.2018.8642716","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach for automatic vehicle detection from aerial images using cascaded Gaussian Mixture Model (GMM) and Support Vector Machine (SVM) algorithm. The GMM based background removal technique eliminates the image background to achieve efficient color classification using SVM classifier. The GMM classifier followed by SVM classification to ensure better results. In the proposed algorithm, the color and local features are the main cues for vehicle detection. To evaluate the performance of the proposed vehicle detection system, the metrics such as hit rate, accuracy and precision valued are used. This paper analyses the system performance and compared it with other background removal methods and classifiers.","PeriodicalId":251356,"journal":{"name":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic Vehicle Detection from Aerial Images using Cascaded Support Vector Machine and Gaussian Mixture Model\",\"authors\":\"Shibani Hamsa, A. Panthakkan, S. Al-Mansoori, Husain Alahamed\",\"doi\":\"10.1109/CSPIS.2018.8642716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel approach for automatic vehicle detection from aerial images using cascaded Gaussian Mixture Model (GMM) and Support Vector Machine (SVM) algorithm. The GMM based background removal technique eliminates the image background to achieve efficient color classification using SVM classifier. The GMM classifier followed by SVM classification to ensure better results. In the proposed algorithm, the color and local features are the main cues for vehicle detection. To evaluate the performance of the proposed vehicle detection system, the metrics such as hit rate, accuracy and precision valued are used. This paper analyses the system performance and compared it with other background removal methods and classifiers.\",\"PeriodicalId\":251356,\"journal\":{\"name\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Signal Processing and Information Security (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPIS.2018.8642716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Signal Processing and Information Security (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPIS.2018.8642716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于级联高斯混合模型(GMM)和支持向量机(SVM)算法的航拍图像车辆自动检测方法。基于GMM的背景去噪技术去除图像背景,利用SVM分类器实现高效的颜色分类。GMM分类器之后是SVM分类器,以确保更好的结果。在该算法中,颜色和局部特征是车辆检测的主要线索。为了评估所提出的车辆检测系统的性能,使用了命中率、准确度和精度值等指标。本文分析了该系统的性能,并将其与其他背景去除方法和分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Vehicle Detection from Aerial Images using Cascaded Support Vector Machine and Gaussian Mixture Model
This paper proposes a novel approach for automatic vehicle detection from aerial images using cascaded Gaussian Mixture Model (GMM) and Support Vector Machine (SVM) algorithm. The GMM based background removal technique eliminates the image background to achieve efficient color classification using SVM classifier. The GMM classifier followed by SVM classification to ensure better results. In the proposed algorithm, the color and local features are the main cues for vehicle detection. To evaluate the performance of the proposed vehicle detection system, the metrics such as hit rate, accuracy and precision valued are used. This paper analyses the system performance and compared it with other background removal methods and classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信