基于卷积自编码器的稀疏表示小波图像分类

Tan-Sy Nguyen, Long H. Ngo, M. Luong, M. Kaaniche, Azeddine Beghdadi
{"title":"基于卷积自编码器的稀疏表示小波图像分类","authors":"Tan-Sy Nguyen, Long H. Ngo, M. Luong, M. Kaaniche, Azeddine Beghdadi","doi":"10.1109/MMSP48831.2020.9287107","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective Convolutional Autoencoder (AE) model for Sparse Representation (SR) in the Wavelet Domain for Classification (SRWC). The proposed approach involves an autoencoder with a sparse latent layer for learning sparse codes of wavelet features. The estimated sparse codes are used for assigning classes to test samples using a residual-based probabilistic criterion. Intensive experiments carried out on various datasets revealed that the proposed method yields better classification accuracy while exhibiting a significant reduction in the number of network parameters, compared to several recent deep learning-based methods.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"24 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convolution Autoencoder-Based Sparse Representation Wavelet for Image Classification\",\"authors\":\"Tan-Sy Nguyen, Long H. Ngo, M. Luong, M. Kaaniche, Azeddine Beghdadi\",\"doi\":\"10.1109/MMSP48831.2020.9287107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an effective Convolutional Autoencoder (AE) model for Sparse Representation (SR) in the Wavelet Domain for Classification (SRWC). The proposed approach involves an autoencoder with a sparse latent layer for learning sparse codes of wavelet features. The estimated sparse codes are used for assigning classes to test samples using a residual-based probabilistic criterion. Intensive experiments carried out on various datasets revealed that the proposed method yields better classification accuracy while exhibiting a significant reduction in the number of network parameters, compared to several recent deep learning-based methods.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"24 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种有效的卷积自编码器(AE)模型,用于小波域分类(SRWC)中的稀疏表示(SR)。该方法包括一个带有稀疏隐层的自编码器,用于学习小波特征的稀疏编码。估计的稀疏代码用于使用基于残差的概率准则为测试样本分配类。在各种数据集上进行的密集实验表明,与最近几种基于深度学习的方法相比,所提出的方法产生了更好的分类精度,同时显示出网络参数数量的显着减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution Autoencoder-Based Sparse Representation Wavelet for Image Classification
In this paper, we propose an effective Convolutional Autoencoder (AE) model for Sparse Representation (SR) in the Wavelet Domain for Classification (SRWC). The proposed approach involves an autoencoder with a sparse latent layer for learning sparse codes of wavelet features. The estimated sparse codes are used for assigning classes to test samples using a residual-based probabilistic criterion. Intensive experiments carried out on various datasets revealed that the proposed method yields better classification accuracy while exhibiting a significant reduction in the number of network parameters, compared to several recent deep learning-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信