肺癌CT图像前向反传播神经网络分类

Pankaj Nanglia, A. N. Mahajan, D. Rathee, S Kumar
{"title":"肺癌CT图像前向反传播神经网络分类","authors":"Pankaj Nanglia, A. N. Mahajan, D. Rathee, S Kumar","doi":"10.1504/ijmei.2021.10020669","DOIUrl":null,"url":null,"abstract":"Manual computation of lung cancer is a time taking process. In the medical industry, software aided detection (SAD) aims to optimise the classification process. This paper proposes lung cancer detection for computed tomography (CT) images. It uses speed up robust feature (SURF) for feature extraction, genetic algorithm (GA) for feature optimisation and feed forward back propagation (FFBP), neural network (NN) for classification. The training mechanism utilises 200 cancerous images and the proposed method results in 96% classification accuracy and 94.7% sensitivity. This paper also discusses the possible future modifications in the presented work.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Lung cancer classification using feed forward back propagation neural network for CT images\",\"authors\":\"Pankaj Nanglia, A. N. Mahajan, D. Rathee, S Kumar\",\"doi\":\"10.1504/ijmei.2021.10020669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual computation of lung cancer is a time taking process. In the medical industry, software aided detection (SAD) aims to optimise the classification process. This paper proposes lung cancer detection for computed tomography (CT) images. It uses speed up robust feature (SURF) for feature extraction, genetic algorithm (GA) for feature optimisation and feed forward back propagation (FFBP), neural network (NN) for classification. The training mechanism utilises 200 cancerous images and the proposed method results in 96% classification accuracy and 94.7% sensitivity. This paper also discusses the possible future modifications in the presented work.\",\"PeriodicalId\":193362,\"journal\":{\"name\":\"Int. J. Medical Eng. Informatics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Medical Eng. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmei.2021.10020669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmei.2021.10020669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

人工计算肺癌是一个费时的过程。在医疗行业,软件辅助检测(SAD)旨在优化分类过程。本文提出了一种基于CT图像的肺癌检测方法。它采用加速鲁棒特征(SURF)进行特征提取,遗传算法(GA)进行特征优化和前馈反馈传播(FFBP),神经网络(NN)进行分类。该训练机制使用了200张癌图像,该方法的分类准确率为96%,灵敏度为94.7%。本文还讨论了未来可能的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lung cancer classification using feed forward back propagation neural network for CT images
Manual computation of lung cancer is a time taking process. In the medical industry, software aided detection (SAD) aims to optimise the classification process. This paper proposes lung cancer detection for computed tomography (CT) images. It uses speed up robust feature (SURF) for feature extraction, genetic algorithm (GA) for feature optimisation and feed forward back propagation (FFBP), neural network (NN) for classification. The training mechanism utilises 200 cancerous images and the proposed method results in 96% classification accuracy and 94.7% sensitivity. This paper also discusses the possible future modifications in the presented work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信