基于自旋图像的三维物体分类的MPI并行实现

A. Eleliemy, D. Hegazy, W. Elkilani
{"title":"基于自旋图像的三维物体分类的MPI并行实现","authors":"A. Eleliemy, D. Hegazy, W. Elkilani","doi":"10.1109/ICENCO.2013.6736471","DOIUrl":null,"url":null,"abstract":"Object recognition and categorization are two important key features of computer vision. Accuracy aspects represent research challenge fo r both object recognition and categorization techniques. High performance computing (HPC) technologies usually manage the increasing time and complexity of computations. In this paper, a new approach that use 3D spin-images for 3D object categorization is introduced. The main contribution of our approach i s that it employs the MPI techniques in a unique way to extract spin-images. The technique proposed utilizes the independence between spin-images generated at each point. Time estimation of our technique ha ve shown dramatic decrease of the categorization time proportional to number of workers used.","PeriodicalId":256564,"journal":{"name":"2013 9th International Computer Engineering Conference (ICENCO)","volume":"5 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"MPI parallel implementation of 3D object categorization using spin-images\",\"authors\":\"A. Eleliemy, D. Hegazy, W. Elkilani\",\"doi\":\"10.1109/ICENCO.2013.6736471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object recognition and categorization are two important key features of computer vision. Accuracy aspects represent research challenge fo r both object recognition and categorization techniques. High performance computing (HPC) technologies usually manage the increasing time and complexity of computations. In this paper, a new approach that use 3D spin-images for 3D object categorization is introduced. The main contribution of our approach i s that it employs the MPI techniques in a unique way to extract spin-images. The technique proposed utilizes the independence between spin-images generated at each point. Time estimation of our technique ha ve shown dramatic decrease of the categorization time proportional to number of workers used.\",\"PeriodicalId\":256564,\"journal\":{\"name\":\"2013 9th International Computer Engineering Conference (ICENCO)\",\"volume\":\"5 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Computer Engineering Conference (ICENCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICENCO.2013.6736471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Computer Engineering Conference (ICENCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICENCO.2013.6736471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目标识别和分类是计算机视觉的两个重要特征。准确性方面是目标识别和分类技术的研究挑战。高性能计算(HPC)技术通常用于管理不断增加的计算时间和复杂性。本文介绍了一种利用三维自旋图像进行三维物体分类的新方法。我们的方法的主要贡献在于它以一种独特的方式使用MPI技术来提取自旋图像。该技术利用了每个点产生的自旋图像之间的独立性。我们的技术的时间估计已经显示出分类时间与使用的工人数量成比例的急剧减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MPI parallel implementation of 3D object categorization using spin-images
Object recognition and categorization are two important key features of computer vision. Accuracy aspects represent research challenge fo r both object recognition and categorization techniques. High performance computing (HPC) technologies usually manage the increasing time and complexity of computations. In this paper, a new approach that use 3D spin-images for 3D object categorization is introduced. The main contribution of our approach i s that it employs the MPI techniques in a unique way to extract spin-images. The technique proposed utilizes the independence between spin-images generated at each point. Time estimation of our technique ha ve shown dramatic decrease of the categorization time proportional to number of workers used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信