基于MapReduce的并行变色龙聚类

Lingxiao Ma, Yi Li, Hancong Tang, Weilai Chi, Depeng Dang
{"title":"基于MapReduce的并行变色龙聚类","authors":"Lingxiao Ma, Yi Li, Hancong Tang, Weilai Chi, Depeng Dang","doi":"10.12733/JICS20105661","DOIUrl":null,"url":null,"abstract":"With the enlarging volumes of datasets in various areas and the rapid development of distributed technologies, parallel clustering is becoming increasingly important. To cluster large-scale data of various shapes, this paper proposes a parallel Chameleon clustering algorithm. The key idea is using a parallel minimum spanning tree algorithm to generate the initial clusters after obtaining the k-nearest neighbor graph of the original dataset in a parallel way inspired by matrix multiplication, and then using strategies suggested by the primary Chameleon clustering to combine clusters and obtain the final clusters. Finally, we design the parallel Chameleon clustering based on MapReduce. Experiments show that this algorithm is efficient and well-performed.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel Chameleon Clustering Based on MapReduce\",\"authors\":\"Lingxiao Ma, Yi Li, Hancong Tang, Weilai Chi, Depeng Dang\",\"doi\":\"10.12733/JICS20105661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the enlarging volumes of datasets in various areas and the rapid development of distributed technologies, parallel clustering is becoming increasingly important. To cluster large-scale data of various shapes, this paper proposes a parallel Chameleon clustering algorithm. The key idea is using a parallel minimum spanning tree algorithm to generate the initial clusters after obtaining the k-nearest neighbor graph of the original dataset in a parallel way inspired by matrix multiplication, and then using strategies suggested by the primary Chameleon clustering to combine clusters and obtain the final clusters. Finally, we design the parallel Chameleon clustering based on MapReduce. Experiments show that this algorithm is efficient and well-performed.\",\"PeriodicalId\":213716,\"journal\":{\"name\":\"The Journal of Information and Computational Science\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Information and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12733/JICS20105661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着各领域数据量的不断扩大和分布式技术的快速发展,并行聚类变得越来越重要。为了对各种形状的大规模数据进行聚类,本文提出了一种并行变色龙聚类算法。其核心思想是利用矩阵乘法的启发,通过并行的方式获得原始数据集的k近邻图后,利用并行最小生成树算法生成初始聚类,然后利用原始变色龙聚类建议的策略将聚类组合起来,得到最终聚类。最后,设计了基于MapReduce的并行变色龙聚类。实验表明,该算法具有良好的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Chameleon Clustering Based on MapReduce
With the enlarging volumes of datasets in various areas and the rapid development of distributed technologies, parallel clustering is becoming increasingly important. To cluster large-scale data of various shapes, this paper proposes a parallel Chameleon clustering algorithm. The key idea is using a parallel minimum spanning tree algorithm to generate the initial clusters after obtaining the k-nearest neighbor graph of the original dataset in a parallel way inspired by matrix multiplication, and then using strategies suggested by the primary Chameleon clustering to combine clusters and obtain the final clusters. Finally, we design the parallel Chameleon clustering based on MapReduce. Experiments show that this algorithm is efficient and well-performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信