具有状态切换模型的随机微分投资组合对策

Shuping Wan
{"title":"具有状态切换模型的随机微分投资组合对策","authors":"Shuping Wan","doi":"10.1109/HIS.2006.70","DOIUrl":null,"url":null,"abstract":"Stochastic dynamic investment games with regime switching model in continuous time between two investors are developed. The market coefficients are modulated by continuous-time Markov chain. There is a single payoff function which depends on both investors¿ wealth processes. One player chooses a dynamic portfolio strategy in order to maximize this expected payoff, while his opponent is simultaneously choosing a dynamic portfolio strategy so as to minimize the same quantity. A general result in optimal control for a stochastic differential game with a general payoff function is presented under some regular conditions. Use this general result to utility-based games of fixed duration, the optimal strategies and value of the games are derived explicitly.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stochastic Differential Portfolio Games with Regime Switching Model\",\"authors\":\"Shuping Wan\",\"doi\":\"10.1109/HIS.2006.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic dynamic investment games with regime switching model in continuous time between two investors are developed. The market coefficients are modulated by continuous-time Markov chain. There is a single payoff function which depends on both investors¿ wealth processes. One player chooses a dynamic portfolio strategy in order to maximize this expected payoff, while his opponent is simultaneously choosing a dynamic portfolio strategy so as to minimize the same quantity. A general result in optimal control for a stochastic differential game with a general payoff function is presented under some regular conditions. Use this general result to utility-based games of fixed duration, the optimal strategies and value of the games are derived explicitly.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

建立了连续时间内两个投资者之间具有状态切换模型的随机动态投资对策。市场系数由连续时间马尔可夫链调制。有一个单一的收益函数,它取决于投资者和财富过程。一个参与者选择动态投资组合策略以最大化预期收益,而他的对手同时选择动态投资组合策略以最小化相同的数量。在一定条件下,给出了具有一般收益函数的随机微分对策最优控制的一般结果。将这一一般结果应用于固定持续时间的基于效用的博弈,明确地推导出博弈的最优策略和价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Differential Portfolio Games with Regime Switching Model
Stochastic dynamic investment games with regime switching model in continuous time between two investors are developed. The market coefficients are modulated by continuous-time Markov chain. There is a single payoff function which depends on both investors¿ wealth processes. One player chooses a dynamic portfolio strategy in order to maximize this expected payoff, while his opponent is simultaneously choosing a dynamic portfolio strategy so as to minimize the same quantity. A general result in optimal control for a stochastic differential game with a general payoff function is presented under some regular conditions. Use this general result to utility-based games of fixed duration, the optimal strategies and value of the games are derived explicitly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信