非线性系统的广义正则变量分析

W. Larimore
{"title":"非线性系统的广义正则变量分析","authors":"W. Larimore","doi":"10.1109/CDC.1988.194622","DOIUrl":null,"url":null,"abstract":"The canonical variate analysis (CVA) is extended to general nonlinear systems. Nonlinear canonical variables are shown to determine the optimum nonlinear transformation of the past maximizing the mutual information between the true and an approximating normal distribution. A sequential procedure for selection of the canonical variables is described. Nonlinear CVA is applied to nonlinear controlled Markov processes to obtain approximating nonlinear filters. A recursive innovations representation is given for the nonlinear filter that also yields an innovations representation for the Markov process model.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"744 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Generalized canonical variate analysis of nonlinear systems\",\"authors\":\"W. Larimore\",\"doi\":\"10.1109/CDC.1988.194622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The canonical variate analysis (CVA) is extended to general nonlinear systems. Nonlinear canonical variables are shown to determine the optimum nonlinear transformation of the past maximizing the mutual information between the true and an approximating normal distribution. A sequential procedure for selection of the canonical variables is described. Nonlinear CVA is applied to nonlinear controlled Markov processes to obtain approximating nonlinear filters. A recursive innovations representation is given for the nonlinear filter that also yields an innovations representation for the Markov process model.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"744 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

将典型变量分析推广到一般非线性系统。非线性正则变量用于确定过去的最优非线性变换,使真正态分布与近似正态分布之间的互信息最大化。描述了选择规范变量的顺序过程。将非线性CVA应用于非线性控制马尔可夫过程,得到近似非线性滤波器。给出了非线性滤波器的递归创新表示,并给出了马尔可夫过程模型的创新表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized canonical variate analysis of nonlinear systems
The canonical variate analysis (CVA) is extended to general nonlinear systems. Nonlinear canonical variables are shown to determine the optimum nonlinear transformation of the past maximizing the mutual information between the true and an approximating normal distribution. A sequential procedure for selection of the canonical variables is described. Nonlinear CVA is applied to nonlinear controlled Markov processes to obtain approximating nonlinear filters. A recursive innovations representation is given for the nonlinear filter that also yields an innovations representation for the Markov process model.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信