广义斜求码的构造与译码

Siyu Liu, Felice Manganiello, F. Kschischang
{"title":"广义斜求码的构造与译码","authors":"Siyu Liu, Felice Manganiello, F. Kschischang","doi":"10.1109/CWIT.2015.7255141","DOIUrl":null,"url":null,"abstract":"Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Construction and decoding of generalized skew-evaluation codes\",\"authors\":\"Siyu Liu, Felice Manganiello, F. Kschischang\",\"doi\":\"10.1109/CWIT.2015.7255141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.\",\"PeriodicalId\":426245,\"journal\":{\"name\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2015.7255141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

斜多项式是一种非交换环的元素,近年来在编码理论和密码学中得到了应用。斜多项式有一个定义良好的求值映射。这一映射导致了一类称为广义偏值码的代码的定义,其中包含作为特殊情况的Gabidulin代码以及其他具有额外理想属性的相关代码。一个berlekamp - welch型解码器对于这些重要的一类代码可以使用Kötter插值在歪斜多项式环中构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and decoding of generalized skew-evaluation codes
Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信