{"title":"广义斜求码的构造与译码","authors":"Siyu Liu, Felice Manganiello, F. Kschischang","doi":"10.1109/CWIT.2015.7255141","DOIUrl":null,"url":null,"abstract":"Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Construction and decoding of generalized skew-evaluation codes\",\"authors\":\"Siyu Liu, Felice Manganiello, F. Kschischang\",\"doi\":\"10.1109/CWIT.2015.7255141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.\",\"PeriodicalId\":426245,\"journal\":{\"name\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2015.7255141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction and decoding of generalized skew-evaluation codes
Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.