机器学习方法的癫痫脑电图标记

Vadim Grubov, Sergey Afinogenov, V. Maximenko, N. Utyashev
{"title":"机器学习方法的癫痫脑电图标记","authors":"Vadim Grubov, Sergey Afinogenov, V. Maximenko, N. Utyashev","doi":"10.1109/DCNA56428.2022.9923177","DOIUrl":null,"url":null,"abstract":"In the present study we implemented machine learning approach to detect seizures on epileptic EEG data. We aimed to propose a method for preliminary EEG marking, that can possibly find application in clinical decision support system.","PeriodicalId":110836,"journal":{"name":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epileptic EEG marking with machine learning approach\",\"authors\":\"Vadim Grubov, Sergey Afinogenov, V. Maximenko, N. Utyashev\",\"doi\":\"10.1109/DCNA56428.2022.9923177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study we implemented machine learning approach to detect seizures on epileptic EEG data. We aimed to propose a method for preliminary EEG marking, that can possibly find application in clinical decision support system.\",\"PeriodicalId\":110836,\"journal\":{\"name\":\"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCNA56428.2022.9923177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCNA56428.2022.9923177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们采用机器学习方法对癫痫脑电图数据进行检测。我们旨在提出一种初步的脑电图标记方法,以期在临床决策支持系统中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epileptic EEG marking with machine learning approach
In the present study we implemented machine learning approach to detect seizures on epileptic EEG data. We aimed to propose a method for preliminary EEG marking, that can possibly find application in clinical decision support system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信