{"title":"低功耗硅关节微型机器人的设计","authors":"R. Yeh, S. Hollar, K. Pister","doi":"10.1163/156856301760132105","DOIUrl":null,"url":null,"abstract":"We are creating a class of autonomous low-power silicon articulated microrobots fabricated on a 1 cm2 silicon die and mounted with actuators, a controller, and a solar array. By taking advantage of the high force-density of electrostatic actuators in the micro scale, low-power actuators can be made for microrobots. A micromotor with an energy efficiency of 4%, that uses CMOS-compatible supply voltage, and has a motion resolution of 2 μm has been demonstrated in a volume of 0.015 mm3. Articulated two degrees-of-freedom legs with built-in mechanical couplings have been fabricated in a commercial micromachining foundry (MUMPs) and successfully assembled. Lowpower CMOS electronics will be used to control the robot locomotion and a solar array chip will be used to power the microrobot.","PeriodicalId":150257,"journal":{"name":"Journal of Micromechatronics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Design of low-power silicon articulated microrobots\",\"authors\":\"R. Yeh, S. Hollar, K. Pister\",\"doi\":\"10.1163/156856301760132105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are creating a class of autonomous low-power silicon articulated microrobots fabricated on a 1 cm2 silicon die and mounted with actuators, a controller, and a solar array. By taking advantage of the high force-density of electrostatic actuators in the micro scale, low-power actuators can be made for microrobots. A micromotor with an energy efficiency of 4%, that uses CMOS-compatible supply voltage, and has a motion resolution of 2 μm has been demonstrated in a volume of 0.015 mm3. Articulated two degrees-of-freedom legs with built-in mechanical couplings have been fabricated in a commercial micromachining foundry (MUMPs) and successfully assembled. Lowpower CMOS electronics will be used to control the robot locomotion and a solar array chip will be used to power the microrobot.\",\"PeriodicalId\":150257,\"journal\":{\"name\":\"Journal of Micromechatronics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1163/156856301760132105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/156856301760132105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of low-power silicon articulated microrobots
We are creating a class of autonomous low-power silicon articulated microrobots fabricated on a 1 cm2 silicon die and mounted with actuators, a controller, and a solar array. By taking advantage of the high force-density of electrostatic actuators in the micro scale, low-power actuators can be made for microrobots. A micromotor with an energy efficiency of 4%, that uses CMOS-compatible supply voltage, and has a motion resolution of 2 μm has been demonstrated in a volume of 0.015 mm3. Articulated two degrees-of-freedom legs with built-in mechanical couplings have been fabricated in a commercial micromachining foundry (MUMPs) and successfully assembled. Lowpower CMOS electronics will be used to control the robot locomotion and a solar array chip will be used to power the microrobot.