基于数据驱动的企业创新能力评价

Lin-Lang Tang, Ji He, Xiaochen Zhang
{"title":"基于数据驱动的企业创新能力评价","authors":"Lin-Lang Tang, Ji He, Xiaochen Zhang","doi":"10.1117/12.2671671","DOIUrl":null,"url":null,"abstract":"To solve the quantitative problem of enterprise innovation capability, a data driven quantitative method of enterprise innovation capability is proposed. Firstly, it analyzes and summarizes seven factors which affect the innovation ability of enterprises; Secondly, the enterprise is adaptively divided into different data clusters by deep clustering method; Thirdly, a Gaussian mixture model is constructed to quantify the innovation capability of the evaluated enterprise. The proposed method adopts data mining technology and can provide reference for enterprise development.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of enterprise's innovation capability with data driven approach\",\"authors\":\"Lin-Lang Tang, Ji He, Xiaochen Zhang\",\"doi\":\"10.1117/12.2671671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the quantitative problem of enterprise innovation capability, a data driven quantitative method of enterprise innovation capability is proposed. Firstly, it analyzes and summarizes seven factors which affect the innovation ability of enterprises; Secondly, the enterprise is adaptively divided into different data clusters by deep clustering method; Thirdly, a Gaussian mixture model is constructed to quantify the innovation capability of the evaluated enterprise. The proposed method adopts data mining technology and can provide reference for enterprise development.\",\"PeriodicalId\":120866,\"journal\":{\"name\":\"Artificial Intelligence and Big Data Forum\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Big Data Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为解决企业创新能力的量化问题,提出了一种数据驱动的企业创新能力量化方法。首先,分析总结了影响企业创新能力的七个因素;其次,采用深度聚类方法自适应地将企业数据划分为不同的数据集群;第三,构建高斯混合模型对被评价企业的创新能力进行量化。该方法采用数据挖掘技术,可为企业发展提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of enterprise's innovation capability with data driven approach
To solve the quantitative problem of enterprise innovation capability, a data driven quantitative method of enterprise innovation capability is proposed. Firstly, it analyzes and summarizes seven factors which affect the innovation ability of enterprises; Secondly, the enterprise is adaptively divided into different data clusters by deep clustering method; Thirdly, a Gaussian mixture model is constructed to quantify the innovation capability of the evaluated enterprise. The proposed method adopts data mining technology and can provide reference for enterprise development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信