概率宏观行为目标

Yusheng Xie, Yu Cheng, Daniel Honbo, Kunpeng Zhang, Ankit Agrawal, A. Choudhary, Yi Gao, Jiangtao Gou
{"title":"概率宏观行为目标","authors":"Yusheng Xie, Yu Cheng, Daniel Honbo, Kunpeng Zhang, Ankit Agrawal, A. Choudhary, Yi Gao, Jiangtao Gou","doi":"10.1145/2390131.2390135","DOIUrl":null,"url":null,"abstract":"We investigate a class of emerging online marketing challenges in social networks; and formally, we define macro behavioral targeting (MBT) to be the marketing efforts that appeal to a massive targeted population with non-personalized broadcasting. Upon the problem formulation, we describe a probabilistic graphical model for MBT. In our model, we derive the prior distributions from scratch because existing applications of graphical model / Bayesian network cannot fully capture the unique characteristics of MBT. In the derivation, we propose an approximation method to circumvent an intractable situation where order statistics need be calculated from exponentially increasing computations. In the experiments, we present case studies on real Facebook data.","PeriodicalId":352894,"journal":{"name":"DUBMMSM '12","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Probabilistic macro behavioral targeting\",\"authors\":\"Yusheng Xie, Yu Cheng, Daniel Honbo, Kunpeng Zhang, Ankit Agrawal, A. Choudhary, Yi Gao, Jiangtao Gou\",\"doi\":\"10.1145/2390131.2390135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a class of emerging online marketing challenges in social networks; and formally, we define macro behavioral targeting (MBT) to be the marketing efforts that appeal to a massive targeted population with non-personalized broadcasting. Upon the problem formulation, we describe a probabilistic graphical model for MBT. In our model, we derive the prior distributions from scratch because existing applications of graphical model / Bayesian network cannot fully capture the unique characteristics of MBT. In the derivation, we propose an approximation method to circumvent an intractable situation where order statistics need be calculated from exponentially increasing computations. In the experiments, we present case studies on real Facebook data.\",\"PeriodicalId\":352894,\"journal\":{\"name\":\"DUBMMSM '12\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DUBMMSM '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390131.2390135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DUBMMSM '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390131.2390135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们调查了一类新兴的在线营销挑战在社交网络;在形式上,我们将宏观行为定位(MBT)定义为通过非个性化广播吸引大量目标人群的营销努力。在问题表述的基础上,我们描述了MBT的概率图模型。在我们的模型中,我们从零开始推导先验分布,因为现有的图形模型/贝叶斯网络应用不能完全捕捉到MBT的独特特征。在推导中,我们提出了一种近似方法,以避免需要从指数增长的计算中计算阶统计量的棘手情况。在实验中,我们对真实的Facebook数据进行了案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic macro behavioral targeting
We investigate a class of emerging online marketing challenges in social networks; and formally, we define macro behavioral targeting (MBT) to be the marketing efforts that appeal to a massive targeted population with non-personalized broadcasting. Upon the problem formulation, we describe a probabilistic graphical model for MBT. In our model, we derive the prior distributions from scratch because existing applications of graphical model / Bayesian network cannot fully capture the unique characteristics of MBT. In the derivation, we propose an approximation method to circumvent an intractable situation where order statistics need be calculated from exponentially increasing computations. In the experiments, we present case studies on real Facebook data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信