模型驱动的可视化分析

S. Garg, Julia Eunju Nam, I. Ramakrishnan, K. Mueller
{"title":"模型驱动的可视化分析","authors":"S. Garg, Julia Eunju Nam, I. Ramakrishnan, K. Mueller","doi":"10.1109/VAST.2008.4677352","DOIUrl":null,"url":null,"abstract":"We describe a visual analytics (VA) infrastructure, rooted on techniques in machine learning and logic-based deductive reasoning that will assist analysts to make sense of large, complex data sets by facilitating the generation and validation of models representing relationships in the data. We use logic programming (LP) as the underlying computing machinery to encode the relations as rules and facts and compute with them. A unique aspect of our approach is that the LP rules are automatically learned, using Inductive Logic Programming, from examples of data that the analyst deems interesting when viewing the data in the high-dimensional visualization interface. Using this system, analysts will be able to construct models of arbitrary relationships in the data, explore the data for scenarios that fit the model, refine the model if necessary, and query the model to automatically analyze incoming (future) data exhibiting the encoded relationships. In other words it will support both model-driven data exploration, as well as data-driven model evolution. More importantly, by basing the construction of models on techniques from machine learning and logic-based deduction, the VA process will be both flexible in terms of modeling arbitrary, user-driven relationships in the data as well as readily scale across different data domains.","PeriodicalId":213107,"journal":{"name":"2008 IEEE Symposium on Visual Analytics Science and Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Model-driven Visual Analytics\",\"authors\":\"S. Garg, Julia Eunju Nam, I. Ramakrishnan, K. Mueller\",\"doi\":\"10.1109/VAST.2008.4677352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a visual analytics (VA) infrastructure, rooted on techniques in machine learning and logic-based deductive reasoning that will assist analysts to make sense of large, complex data sets by facilitating the generation and validation of models representing relationships in the data. We use logic programming (LP) as the underlying computing machinery to encode the relations as rules and facts and compute with them. A unique aspect of our approach is that the LP rules are automatically learned, using Inductive Logic Programming, from examples of data that the analyst deems interesting when viewing the data in the high-dimensional visualization interface. Using this system, analysts will be able to construct models of arbitrary relationships in the data, explore the data for scenarios that fit the model, refine the model if necessary, and query the model to automatically analyze incoming (future) data exhibiting the encoded relationships. In other words it will support both model-driven data exploration, as well as data-driven model evolution. More importantly, by basing the construction of models on techniques from machine learning and logic-based deduction, the VA process will be both flexible in terms of modeling arbitrary, user-driven relationships in the data as well as readily scale across different data domains.\",\"PeriodicalId\":213107,\"journal\":{\"name\":\"2008 IEEE Symposium on Visual Analytics Science and Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Symposium on Visual Analytics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2008.4677352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Symposium on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2008.4677352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

我们描述了一个基于机器学习和基于逻辑的演绎推理技术的可视化分析(VA)基础设施,该基础设施将通过促进数据中表示关系的模型的生成和验证,帮助分析师理解大型复杂数据集。我们使用逻辑编程(LP)作为底层计算机制,将关系编码为规则和事实,并使用它们进行计算。我们方法的一个独特之处在于,LP规则是自动学习的,使用归纳逻辑编程,从分析师在高维可视化界面中查看数据时认为有趣的数据示例中学习。使用该系统,分析人员将能够在数据中构建任意关系的模型,探索适合模型的场景的数据,在必要时改进模型,并查询模型以自动分析显示编码关系的传入(未来)数据。换句话说,它既支持模型驱动的数据探索,也支持数据驱动的模型演化。更重要的是,通过基于机器学习和基于逻辑的推理技术的模型构建,VA过程将在建模数据中的任意用户驱动关系方面具有灵活性,并且可以轻松扩展到不同的数据域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-driven Visual Analytics
We describe a visual analytics (VA) infrastructure, rooted on techniques in machine learning and logic-based deductive reasoning that will assist analysts to make sense of large, complex data sets by facilitating the generation and validation of models representing relationships in the data. We use logic programming (LP) as the underlying computing machinery to encode the relations as rules and facts and compute with them. A unique aspect of our approach is that the LP rules are automatically learned, using Inductive Logic Programming, from examples of data that the analyst deems interesting when viewing the data in the high-dimensional visualization interface. Using this system, analysts will be able to construct models of arbitrary relationships in the data, explore the data for scenarios that fit the model, refine the model if necessary, and query the model to automatically analyze incoming (future) data exhibiting the encoded relationships. In other words it will support both model-driven data exploration, as well as data-driven model evolution. More importantly, by basing the construction of models on techniques from machine learning and logic-based deduction, the VA process will be both flexible in terms of modeling arbitrary, user-driven relationships in the data as well as readily scale across different data domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信