常系数一阶ode的多项式解

SIGSAM Bull. Pub Date : 2003-09-01 DOI:10.1145/990353.990360
Ruyong Feng, X. Gao
{"title":"常系数一阶ode的多项式解","authors":"Ruyong Feng, X. Gao","doi":"10.1145/990353.990360","DOIUrl":null,"url":null,"abstract":"Most work on finding elementary function solutions for differential equations focussed on linear equations [4, 2, 6, 1, 3]. In this paper, we try to find polynomial solutions to non-linear differential equations. Instead of finding arbitrary polynomial solutions, we will find the polynomial general solutions. For example, the general solution for (d<i>y</i>/d<i>x</i>)<sup>2</sup> - 4<i>y</i> = 0 is <i>y</i> = (<i>x + c</i>)<sup>2</sup>, where <i>c</i> is an arbitrary constant. We give a necessary and sufficient condition for an ODE with constant coefficients to have polynomial general solutions. For a first order ODE of degree <i>n</i> and with constant coefficients, we give an algorithm of complexity <i>O</i>(<i>n</i><sup>9</sup>) to decide if it has a polynomial general solution and to compute the solution if it exists.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polynomial solutions for first order ODEs with constant coefficients\",\"authors\":\"Ruyong Feng, X. Gao\",\"doi\":\"10.1145/990353.990360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most work on finding elementary function solutions for differential equations focussed on linear equations [4, 2, 6, 1, 3]. In this paper, we try to find polynomial solutions to non-linear differential equations. Instead of finding arbitrary polynomial solutions, we will find the polynomial general solutions. For example, the general solution for (d<i>y</i>/d<i>x</i>)<sup>2</sup> - 4<i>y</i> = 0 is <i>y</i> = (<i>x + c</i>)<sup>2</sup>, where <i>c</i> is an arbitrary constant. We give a necessary and sufficient condition for an ODE with constant coefficients to have polynomial general solutions. For a first order ODE of degree <i>n</i> and with constant coefficients, we give an algorithm of complexity <i>O</i>(<i>n</i><sup>9</sup>) to decide if it has a polynomial general solution and to compute the solution if it exists.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/990353.990360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/990353.990360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大多数寻找微分方程初等函数解的工作都集中在线性方程上[4,2,6,1,3]。在本文中,我们试图找到非线性微分方程的多项式解。我们不是求任意多项式解,而是求多项式通解。例如,(dy/dx)2 - 4y = 0的通解是y = (x + c)2,其中c是任意常数。给出了常系数微分方程具有多项式通解的充分必要条件。对于阶数为n且常系数的一阶ODE,我们给出了复杂度为O(n9)的算法来判定它是否具有多项式通解,并计算其是否存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial solutions for first order ODEs with constant coefficients
Most work on finding elementary function solutions for differential equations focussed on linear equations [4, 2, 6, 1, 3]. In this paper, we try to find polynomial solutions to non-linear differential equations. Instead of finding arbitrary polynomial solutions, we will find the polynomial general solutions. For example, the general solution for (dy/dx)2 - 4y = 0 is y = (x + c)2, where c is an arbitrary constant. We give a necessary and sufficient condition for an ODE with constant coefficients to have polynomial general solutions. For a first order ODE of degree n and with constant coefficients, we give an algorithm of complexity O(n9) to decide if it has a polynomial general solution and to compute the solution if it exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信