IBEX:使用唯一标识符从Web中获取实体

Aliaksandr Talaika, J. Biega, Antoine Amarilli, Fabian M. Suchanek
{"title":"IBEX:使用唯一标识符从Web中获取实体","authors":"Aliaksandr Talaika, J. Biega, Antoine Amarilli, Fabian M. Suchanek","doi":"10.1145/2767109.2767116","DOIUrl":null,"url":null,"abstract":"In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with humanreadable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.","PeriodicalId":316270,"journal":{"name":"Proceedings of the 18th International Workshop on Web and Databases","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"IBEX: Harvesting Entities from the Web Using Unique Identifiers\",\"authors\":\"Aliaksandr Talaika, J. Biega, Antoine Amarilli, Fabian M. Suchanek\",\"doi\":\"10.1145/2767109.2767116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with humanreadable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.\",\"PeriodicalId\":316270,\"journal\":{\"name\":\"Proceedings of the 18th International Workshop on Web and Databases\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Workshop on Web and Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2767109.2767116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Workshop on Web and Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2767109.2767116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在本文中,我们研究了唯一实体标识符在Web上的流行。例如,isbn(用于图书)、gtin(用于商业产品)、doi(用于文档)、电子邮件地址等等。我们将展示如何从Web页面系统地获取这些标识符,以及如何将它们与大规模实体的人类可读名称相关联。从简单地从Web页面中提取标识符和名称开始,我们将展示如何使用唯一标识符的属性来过滤噪声并清理整个语料库上的提取结果。最终的结果是一个包含数百万个不同类型的唯一标识实体的数据库,与现有的知识库相比,准确率达到73- 96%,覆盖率非常高。我们使用这个数据库来计算关于Web上产品、人员和其他实体存在的新统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IBEX: Harvesting Entities from the Web Using Unique Identifiers
In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with humanreadable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信