Felipe P. Mosquera, J. Rodriguez-Ferreira, Efren Acevedo, Oscar Restrepo, G. Chaparro
{"title":"100-200兆赫的基于sdr的射电望远镜专注于再电离时代的宇宙学研究","authors":"Felipe P. Mosquera, J. Rodriguez-Ferreira, Efren Acevedo, Oscar Restrepo, G. Chaparro","doi":"10.1109/AP-S/USNC-URSI47032.2022.9886318","DOIUrl":null,"url":null,"abstract":"Radio astronomy as an observational technique used in Astronomy allows experimental validation of theoretical models based on the study of electromagnetic cosmic waves. Technically speaking, uses dedicated instrumentation (radio telescopes) to acquire such signals. The study, base on the emission of 21-cm of neutral hydrogen at frequencies between 100 and 200 MHz, permits to cover a scientific case of open study called Epoch of Reionization (EoR) in which we seek to compare physics models with experimental measurements. This paper presents simulations and measurements of the sub-systems of a 100-200 MHz radiotelescope to establish the feseability to use Software Defined Radio (SDR) technology devices as receptors for low frequency radio telescopes.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"100-200 MHz sdr-based radio telescope focused on the cosmological study of the Epoch of Reionization\",\"authors\":\"Felipe P. Mosquera, J. Rodriguez-Ferreira, Efren Acevedo, Oscar Restrepo, G. Chaparro\",\"doi\":\"10.1109/AP-S/USNC-URSI47032.2022.9886318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio astronomy as an observational technique used in Astronomy allows experimental validation of theoretical models based on the study of electromagnetic cosmic waves. Technically speaking, uses dedicated instrumentation (radio telescopes) to acquire such signals. The study, base on the emission of 21-cm of neutral hydrogen at frequencies between 100 and 200 MHz, permits to cover a scientific case of open study called Epoch of Reionization (EoR) in which we seek to compare physics models with experimental measurements. This paper presents simulations and measurements of the sub-systems of a 100-200 MHz radiotelescope to establish the feseability to use Software Defined Radio (SDR) technology devices as receptors for low frequency radio telescopes.\",\"PeriodicalId\":371560,\"journal\":{\"name\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
100-200 MHz sdr-based radio telescope focused on the cosmological study of the Epoch of Reionization
Radio astronomy as an observational technique used in Astronomy allows experimental validation of theoretical models based on the study of electromagnetic cosmic waves. Technically speaking, uses dedicated instrumentation (radio telescopes) to acquire such signals. The study, base on the emission of 21-cm of neutral hydrogen at frequencies between 100 and 200 MHz, permits to cover a scientific case of open study called Epoch of Reionization (EoR) in which we seek to compare physics models with experimental measurements. This paper presents simulations and measurements of the sub-systems of a 100-200 MHz radiotelescope to establish the feseability to use Software Defined Radio (SDR) technology devices as receptors for low frequency radio telescopes.