基于表面法线方向的非接触式3D手部生物识别特征表示

Kevin H. M. Cheng, Ajay Kumar
{"title":"基于表面法线方向的非接触式3D手部生物识别特征表示","authors":"Kevin H. M. Cheng, Ajay Kumar","doi":"10.1109/IJCB48548.2020.9304860","DOIUrl":null,"url":null,"abstract":"Contactless 3D hand biometrics offers hygienic and convenient approaches for biometric recognition. This paper investigates a distinctive feature representation using 3D surface normal information for more accurate 3D hand biometric identification. Prior research on contactless 3D hand biometric identification largely incorporates 3D depth and surface curvature information to recover discriminative features. Our investigation presented in this paper indicates that extracting distinctive features from surface normal information, which can also be directly obtained from low-cost photometric stereo based imaging systems, can offer a computationally simpler alternative and is therefore highly desirable. The directions of neighbouring surface normal vectors can encode frequently observed irregular ridge and valley regions, which can enable more accurate surface feature description. Comparative experimental results presented in this paper validates the effectiveness of the proposed approach.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distinctive Feature Representation for Contactless 3D Hand Biometrics using Surface Normal Directions\",\"authors\":\"Kevin H. M. Cheng, Ajay Kumar\",\"doi\":\"10.1109/IJCB48548.2020.9304860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contactless 3D hand biometrics offers hygienic and convenient approaches for biometric recognition. This paper investigates a distinctive feature representation using 3D surface normal information for more accurate 3D hand biometric identification. Prior research on contactless 3D hand biometric identification largely incorporates 3D depth and surface curvature information to recover discriminative features. Our investigation presented in this paper indicates that extracting distinctive features from surface normal information, which can also be directly obtained from low-cost photometric stereo based imaging systems, can offer a computationally simpler alternative and is therefore highly desirable. The directions of neighbouring surface normal vectors can encode frequently observed irregular ridge and valley regions, which can enable more accurate surface feature description. Comparative experimental results presented in this paper validates the effectiveness of the proposed approach.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非接触式3D手部生物识别技术为生物识别提供了卫生、方便的方法。本文研究了一种利用三维表面法向信息的特征表示方法,以实现更准确的三维手部生物识别。以往的非接触式三维手部生物特征识别研究主要是利用三维深度和表面曲率信息来恢复识别特征。我们在本文中提出的研究表明,从表面法线信息中提取独特的特征,也可以直接从低成本的光度立体成像系统中获得,可以提供一个计算更简单的替代方案,因此是非常可取的。相邻表面法向量的方向可以对频繁观测的不规则脊谷区域进行编码,可以更准确地描述表面特征。对比实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinctive Feature Representation for Contactless 3D Hand Biometrics using Surface Normal Directions
Contactless 3D hand biometrics offers hygienic and convenient approaches for biometric recognition. This paper investigates a distinctive feature representation using 3D surface normal information for more accurate 3D hand biometric identification. Prior research on contactless 3D hand biometric identification largely incorporates 3D depth and surface curvature information to recover discriminative features. Our investigation presented in this paper indicates that extracting distinctive features from surface normal information, which can also be directly obtained from low-cost photometric stereo based imaging systems, can offer a computationally simpler alternative and is therefore highly desirable. The directions of neighbouring surface normal vectors can encode frequently observed irregular ridge and valley regions, which can enable more accurate surface feature description. Comparative experimental results presented in this paper validates the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信