投资者行为算法模型的估计与预测

A. Lo, A. Remorov
{"title":"投资者行为算法模型的估计与预测","authors":"A. Lo, A. Remorov","doi":"10.52354/jsi.2.1.iii","DOIUrl":null,"url":null,"abstract":"We propose a Markov chain Monte Carlo (MCMC) algorithm for estimating the parameters of algorithmic models of investor behavior. We show that this method can successfully infer the relative importance of each heuristic among a large cross-section of investors, even when the number of observations per investor is quite small. We also compare the accuracy of the MCMC approach to regression analysis in predicting the relative importance of heuristics at the individual and aggregate levels and conclude that MCMC predicts aggregate weights more accurately while regression outperforms in predicting individual weights.","PeriodicalId":400870,"journal":{"name":"Journal of Systematic Investing","volume":"717 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation and Prediction for Algorithmic Models of Investor Behavior\",\"authors\":\"A. Lo, A. Remorov\",\"doi\":\"10.52354/jsi.2.1.iii\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Markov chain Monte Carlo (MCMC) algorithm for estimating the parameters of algorithmic models of investor behavior. We show that this method can successfully infer the relative importance of each heuristic among a large cross-section of investors, even when the number of observations per investor is quite small. We also compare the accuracy of the MCMC approach to regression analysis in predicting the relative importance of heuristics at the individual and aggregate levels and conclude that MCMC predicts aggregate weights more accurately while regression outperforms in predicting individual weights.\",\"PeriodicalId\":400870,\"journal\":{\"name\":\"Journal of Systematic Investing\",\"volume\":\"717 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systematic Investing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52354/jsi.2.1.iii\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematic Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52354/jsi.2.1.iii","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种马尔可夫链蒙特卡罗(MCMC)算法来估计投资者行为算法模型的参数。我们表明,这种方法可以成功地推断出每个启发式的相对重要性在一个大的投资者横截面,即使每个投资者的观察数量相当小。我们还比较了MCMC方法与回归分析方法在预测个体和总体水平上启发式的相对重要性方面的准确性,并得出结论,MCMC方法更准确地预测总体权重,而回归方法在预测个体权重方面优于回归分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation and Prediction for Algorithmic Models of Investor Behavior
We propose a Markov chain Monte Carlo (MCMC) algorithm for estimating the parameters of algorithmic models of investor behavior. We show that this method can successfully infer the relative importance of each heuristic among a large cross-section of investors, even when the number of observations per investor is quite small. We also compare the accuracy of the MCMC approach to regression analysis in predicting the relative importance of heuristics at the individual and aggregate levels and conclude that MCMC predicts aggregate weights more accurately while regression outperforms in predicting individual weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信