{"title":"投资者行为算法模型的估计与预测","authors":"A. Lo, A. Remorov","doi":"10.52354/jsi.2.1.iii","DOIUrl":null,"url":null,"abstract":"We propose a Markov chain Monte Carlo (MCMC) algorithm for estimating the parameters of algorithmic models of investor behavior. We show that this method can successfully infer the relative importance of each heuristic among a large cross-section of investors, even when the number of observations per investor is quite small. We also compare the accuracy of the MCMC approach to regression analysis in predicting the relative importance of heuristics at the individual and aggregate levels and conclude that MCMC predicts aggregate weights more accurately while regression outperforms in predicting individual weights.","PeriodicalId":400870,"journal":{"name":"Journal of Systematic Investing","volume":"717 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation and Prediction for Algorithmic Models of Investor Behavior\",\"authors\":\"A. Lo, A. Remorov\",\"doi\":\"10.52354/jsi.2.1.iii\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Markov chain Monte Carlo (MCMC) algorithm for estimating the parameters of algorithmic models of investor behavior. We show that this method can successfully infer the relative importance of each heuristic among a large cross-section of investors, even when the number of observations per investor is quite small. We also compare the accuracy of the MCMC approach to regression analysis in predicting the relative importance of heuristics at the individual and aggregate levels and conclude that MCMC predicts aggregate weights more accurately while regression outperforms in predicting individual weights.\",\"PeriodicalId\":400870,\"journal\":{\"name\":\"Journal of Systematic Investing\",\"volume\":\"717 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systematic Investing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52354/jsi.2.1.iii\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematic Investing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52354/jsi.2.1.iii","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimation and Prediction for Algorithmic Models of Investor Behavior
We propose a Markov chain Monte Carlo (MCMC) algorithm for estimating the parameters of algorithmic models of investor behavior. We show that this method can successfully infer the relative importance of each heuristic among a large cross-section of investors, even when the number of observations per investor is quite small. We also compare the accuracy of the MCMC approach to regression analysis in predicting the relative importance of heuristics at the individual and aggregate levels and conclude that MCMC predicts aggregate weights more accurately while regression outperforms in predicting individual weights.