信用评分模型的公平性

Christophe Hurlin, C. Pérignon, Sébastien Saurin
{"title":"信用评分模型的公平性","authors":"Christophe Hurlin, C. Pérignon, Sébastien Saurin","doi":"10.2139/ssrn.3785882","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) can systematically treat unfavorably a group of individuals sharing a protected attribute (e.g. gender, age, race). In credit scoring applications, this lack of fairness can severely distort access to credit and expose AI-enabled financial institutions to legal and reputational risks. In this paper, we develop a unified framework assessing the fairness of AI algorithms used in credit markets. First, we propose an inference procedure to test various fairness metrics. Second, we present an interpretability technique, called Fairness Partial Dependence Plot, to identify the source(s) of the lack of fairness and mitigate fairness concerns. We illustrate the efficiency of our framework using a dataset of consumer loans and a series of machine-learning algorithms.","PeriodicalId":129815,"journal":{"name":"Microeconomics: Welfare Economics & Collective Decision-Making eJournal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Fairness of Credit Scoring Models\",\"authors\":\"Christophe Hurlin, C. Pérignon, Sébastien Saurin\",\"doi\":\"10.2139/ssrn.3785882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) can systematically treat unfavorably a group of individuals sharing a protected attribute (e.g. gender, age, race). In credit scoring applications, this lack of fairness can severely distort access to credit and expose AI-enabled financial institutions to legal and reputational risks. In this paper, we develop a unified framework assessing the fairness of AI algorithms used in credit markets. First, we propose an inference procedure to test various fairness metrics. Second, we present an interpretability technique, called Fairness Partial Dependence Plot, to identify the source(s) of the lack of fairness and mitigate fairness concerns. We illustrate the efficiency of our framework using a dataset of consumer loans and a series of machine-learning algorithms.\",\"PeriodicalId\":129815,\"journal\":{\"name\":\"Microeconomics: Welfare Economics & Collective Decision-Making eJournal\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microeconomics: Welfare Economics & Collective Decision-Making eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3785882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: Welfare Economics & Collective Decision-Making eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3785882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人工智能(AI)可以系统地对一组共享受保护属性(如性别、年龄、种族)的个体进行不利对待。在信用评分应用中,这种公平性的缺乏可能会严重扭曲获得信贷的途径,并使人工智能金融机构面临法律和声誉风险。在本文中,我们开发了一个统一的框架来评估信贷市场中使用的人工智能算法的公平性。首先,我们提出了一个推理程序来测试各种公平指标。其次,我们提出了一种可解释性技术,称为公平性部分依赖图,以确定缺乏公平性的来源并减轻公平性问题。我们使用消费贷款数据集和一系列机器学习算法来说明我们框架的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fairness of Credit Scoring Models
Artificial Intelligence (AI) can systematically treat unfavorably a group of individuals sharing a protected attribute (e.g. gender, age, race). In credit scoring applications, this lack of fairness can severely distort access to credit and expose AI-enabled financial institutions to legal and reputational risks. In this paper, we develop a unified framework assessing the fairness of AI algorithms used in credit markets. First, we propose an inference procedure to test various fairness metrics. Second, we present an interpretability technique, called Fairness Partial Dependence Plot, to identify the source(s) of the lack of fairness and mitigate fairness concerns. We illustrate the efficiency of our framework using a dataset of consumer loans and a series of machine-learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信