几何功率与坡印亭矢量:谐波潮流的几何代数物理推导

F. G. Montoya, F. Arrabal-Campos, A. Alcayde, Xabier Prado-Orbán, Jorge Mira
{"title":"几何功率与坡印亭矢量:谐波潮流的几何代数物理推导","authors":"F. G. Montoya, F. Arrabal-Campos, A. Alcayde, Xabier Prado-Orbán, Jorge Mira","doi":"10.1109/ICHQP53011.2022.9808623","DOIUrl":null,"url":null,"abstract":"This document aims to establish an alternative physical formulation for the harmonic power flow in electrical systems provided by Geometric Algebra (GA) and the Poynting Vector (PV) and Poynting Theorem (PT). Given the traditional definition of PV (Abraham approach) as the vector product of the electric field and magnetic field, we exploit the property of the vector product as a dual form of the much more powerful wedge product operator from exterior algebra. Using concepts of vector spaces, we develop a completely GA-based approach founded on top of the isomorphism among periodic time-domain signals and Euclidean spaces. Our investigations shed more light on the long-running discussion of electric power flow in non-sinusoidal and non-linear electrical power systems.","PeriodicalId":249133,"journal":{"name":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometric Power and Poynting Vector: a Physical Derivation for Harmonic Power Flow using Geometric Algebra\",\"authors\":\"F. G. Montoya, F. Arrabal-Campos, A. Alcayde, Xabier Prado-Orbán, Jorge Mira\",\"doi\":\"10.1109/ICHQP53011.2022.9808623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This document aims to establish an alternative physical formulation for the harmonic power flow in electrical systems provided by Geometric Algebra (GA) and the Poynting Vector (PV) and Poynting Theorem (PT). Given the traditional definition of PV (Abraham approach) as the vector product of the electric field and magnetic field, we exploit the property of the vector product as a dual form of the much more powerful wedge product operator from exterior algebra. Using concepts of vector spaces, we develop a completely GA-based approach founded on top of the isomorphism among periodic time-domain signals and Euclidean spaces. Our investigations shed more light on the long-running discussion of electric power flow in non-sinusoidal and non-linear electrical power systems.\",\"PeriodicalId\":249133,\"journal\":{\"name\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP53011.2022.9808623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Conference on Harmonics & Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP53011.2022.9808623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在建立一个由几何代数(GA)和Poynting向量(PV)和Poynting定理(PT)提供的电力系统谐波潮流的替代物理公式。将传统的亚伯拉罕方法定义为电场和磁场的向量积,我们利用了向量积作为外部代数中更强大的楔形积算子的对偶形式的性质。利用向量空间的概念,在周期时域信号与欧几里得空间同构的基础上,提出了一种完全基于遗传算法的方法。我们的研究为长期以来关于非正弦和非线性电力系统中电力流动的讨论提供了更多的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Power and Poynting Vector: a Physical Derivation for Harmonic Power Flow using Geometric Algebra
This document aims to establish an alternative physical formulation for the harmonic power flow in electrical systems provided by Geometric Algebra (GA) and the Poynting Vector (PV) and Poynting Theorem (PT). Given the traditional definition of PV (Abraham approach) as the vector product of the electric field and magnetic field, we exploit the property of the vector product as a dual form of the much more powerful wedge product operator from exterior algebra. Using concepts of vector spaces, we develop a completely GA-based approach founded on top of the isomorphism among periodic time-domain signals and Euclidean spaces. Our investigations shed more light on the long-running discussion of electric power flow in non-sinusoidal and non-linear electrical power systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信