利用测井曲线和三维地震资料预测岩石物性的新神经网络算法

S. Egorov, I. Priezzhev
{"title":"利用测井曲线和三维地震资料预测岩石物性的新神经网络算法","authors":"S. Egorov, I. Priezzhev","doi":"10.3997/2214-4609.201802335","DOIUrl":null,"url":null,"abstract":"The article is dedicated to a new neural network algorithm which is aimed to spatial well log curves prediction using seismic data. The specificity of proposed method is usage of variety random functions instead of weight coefficients and activation function in neural networks. As an example of effectivity of the new approach the results of density prediction using two neural network algorithms are demonstrated.","PeriodicalId":288128,"journal":{"name":"20th conference on oil and gas geological exploration and development","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Neural Network Algorithm Aimed to Physical Properties of Rocks Prediction Using Log Curves and 3D Seismic Data\",\"authors\":\"S. Egorov, I. Priezzhev\",\"doi\":\"10.3997/2214-4609.201802335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is dedicated to a new neural network algorithm which is aimed to spatial well log curves prediction using seismic data. The specificity of proposed method is usage of variety random functions instead of weight coefficients and activation function in neural networks. As an example of effectivity of the new approach the results of density prediction using two neural network algorithms are demonstrated.\",\"PeriodicalId\":288128,\"journal\":{\"name\":\"20th conference on oil and gas geological exploration and development\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"20th conference on oil and gas geological exploration and development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201802335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th conference on oil and gas geological exploration and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种利用地震资料进行空间测井曲线预测的神经网络算法。该方法的特点是使用多种随机函数代替神经网络中的权系数和激活函数。通过实例验证了该方法的有效性,并给出了两种神经网络算法的密度预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Neural Network Algorithm Aimed to Physical Properties of Rocks Prediction Using Log Curves and 3D Seismic Data
The article is dedicated to a new neural network algorithm which is aimed to spatial well log curves prediction using seismic data. The specificity of proposed method is usage of variety random functions instead of weight coefficients and activation function in neural networks. As an example of effectivity of the new approach the results of density prediction using two neural network algorithms are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信