电缆的浸入曲线

J. Hanselman, Liam Watson
{"title":"电缆的浸入曲线","authors":"J. Hanselman, Liam Watson","doi":"10.2140/gt.2023.27.925","DOIUrl":null,"url":null,"abstract":"In joint work with J. Rasmussen, we gave an interpretation of Heegaard Floer homology for manifolds with torus boundary in terms of immersed curves in a punctured torus. In particular, knot Floer homology is captured by this invariant. Appealing to earlier work of the authors on bordered Floer homology, we give a formula for the behaviour of these immersed curves under cabling.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Cabling in terms of immersed curves\",\"authors\":\"J. Hanselman, Liam Watson\",\"doi\":\"10.2140/gt.2023.27.925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In joint work with J. Rasmussen, we gave an interpretation of Heegaard Floer homology for manifolds with torus boundary in terms of immersed curves in a punctured torus. In particular, knot Floer homology is captured by this invariant. Appealing to earlier work of the authors on bordered Floer homology, we give a formula for the behaviour of these immersed curves under cabling.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在与J. Rasmussen的合作中,我们给出了环面边界流形的Heegaard flower同调的穿孔环面浸入曲线的解释。特别是,结花同源性被这个不变量捕获。借鉴前人关于有边弗洛勒同调的工作,我们给出了这些浸入曲线在电缆作用下的行为公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cabling in terms of immersed curves
In joint work with J. Rasmussen, we gave an interpretation of Heegaard Floer homology for manifolds with torus boundary in terms of immersed curves in a punctured torus. In particular, knot Floer homology is captured by this invariant. Appealing to earlier work of the authors on bordered Floer homology, we give a formula for the behaviour of these immersed curves under cabling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信