D. Nguyen, Arvind Rajagopalan, Jijoong Kim, C. Lim, David Hubczenko
{"title":"动态多目标分配与分散在线学习实现多个同步目标","authors":"D. Nguyen, Arvind Rajagopalan, Jijoong Kim, C. Lim, David Hubczenko","doi":"10.1109/ICMLC51923.2020.9469589","DOIUrl":null,"url":null,"abstract":"In this paper, we present a decentralised online decision-making strategy for multi-agents carrying out a cooperative mission. Our solution provides the capability for agents to dynamically choose their best targets and arrive at their target locations simultaneously at pre-specified angles. Additionally, the agents are able to cope with any obstacles encountered without compromising the mission goals. The algorithm combines game-theoretic regret minimisation with current best-practice solutions to satisfy complex mission requirements. It is decentralised and readily scalable to a large number of agents for wide area operations. Simulation results show it can be applied to teams of agents in challenging environments and exhibits fast convergence and adaptability.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Multi-Target Assignment with Decentralised Online Learning to Achieve Multiple Synchronised Goals\",\"authors\":\"D. Nguyen, Arvind Rajagopalan, Jijoong Kim, C. Lim, David Hubczenko\",\"doi\":\"10.1109/ICMLC51923.2020.9469589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a decentralised online decision-making strategy for multi-agents carrying out a cooperative mission. Our solution provides the capability for agents to dynamically choose their best targets and arrive at their target locations simultaneously at pre-specified angles. Additionally, the agents are able to cope with any obstacles encountered without compromising the mission goals. The algorithm combines game-theoretic regret minimisation with current best-practice solutions to satisfy complex mission requirements. It is decentralised and readily scalable to a large number of agents for wide area operations. Simulation results show it can be applied to teams of agents in challenging environments and exhibits fast convergence and adaptability.\",\"PeriodicalId\":170815,\"journal\":{\"name\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC51923.2020.9469589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Multi-Target Assignment with Decentralised Online Learning to Achieve Multiple Synchronised Goals
In this paper, we present a decentralised online decision-making strategy for multi-agents carrying out a cooperative mission. Our solution provides the capability for agents to dynamically choose their best targets and arrive at their target locations simultaneously at pre-specified angles. Additionally, the agents are able to cope with any obstacles encountered without compromising the mission goals. The algorithm combines game-theoretic regret minimisation with current best-practice solutions to satisfy complex mission requirements. It is decentralised and readily scalable to a large number of agents for wide area operations. Simulation results show it can be applied to teams of agents in challenging environments and exhibits fast convergence and adaptability.