{"title":"跨并行语言和体系结构的NAS MG基准比较研究","authors":"B. Chamberlain, Steven J. Deitz, L. Snyder","doi":"10.1109/SC.2000.10006","DOIUrl":null,"url":null,"abstract":"Hierarchical algorithms such as multigrid applications form an important cornerstone for scientific computing. In this study, we take a first step toward evaluating parallel language support for hierarchical applications by comparing implementations of the NAS MG benchmark in several parallel programming languages: Co-Array Fortran, High Performance Fortran, Single Assignment C, and ZPL. We evaluate each language in terms of its portability, its performance, and its ability to express the algorithm clearly and concisely. Experimental platforms include the Cray T3E, IBM SP, SGI Origin, Sun Enterprise 5500, and a high-performance Linux cluster. Our findings indicate that while it is possible to achieve good portability, performance, and expressiveness, most languages currently fall short in at least one of these areas. We find a strong correlation between expressiveness and a language’s support for a global view of computation, and we identify key factors for achieving portable performance in multigrid applications.","PeriodicalId":228250,"journal":{"name":"ACM/IEEE SC 2000 Conference (SC'00)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"A Comparative Study of the NAS MG Benchmark across Parallel Languages and Architectures\",\"authors\":\"B. Chamberlain, Steven J. Deitz, L. Snyder\",\"doi\":\"10.1109/SC.2000.10006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical algorithms such as multigrid applications form an important cornerstone for scientific computing. In this study, we take a first step toward evaluating parallel language support for hierarchical applications by comparing implementations of the NAS MG benchmark in several parallel programming languages: Co-Array Fortran, High Performance Fortran, Single Assignment C, and ZPL. We evaluate each language in terms of its portability, its performance, and its ability to express the algorithm clearly and concisely. Experimental platforms include the Cray T3E, IBM SP, SGI Origin, Sun Enterprise 5500, and a high-performance Linux cluster. Our findings indicate that while it is possible to achieve good portability, performance, and expressiveness, most languages currently fall short in at least one of these areas. We find a strong correlation between expressiveness and a language’s support for a global view of computation, and we identify key factors for achieving portable performance in multigrid applications.\",\"PeriodicalId\":228250,\"journal\":{\"name\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2000 Conference (SC'00)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2000.10006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2000 Conference (SC'00)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2000.10006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparative Study of the NAS MG Benchmark across Parallel Languages and Architectures
Hierarchical algorithms such as multigrid applications form an important cornerstone for scientific computing. In this study, we take a first step toward evaluating parallel language support for hierarchical applications by comparing implementations of the NAS MG benchmark in several parallel programming languages: Co-Array Fortran, High Performance Fortran, Single Assignment C, and ZPL. We evaluate each language in terms of its portability, its performance, and its ability to express the algorithm clearly and concisely. Experimental platforms include the Cray T3E, IBM SP, SGI Origin, Sun Enterprise 5500, and a high-performance Linux cluster. Our findings indicate that while it is possible to achieve good portability, performance, and expressiveness, most languages currently fall short in at least one of these areas. We find a strong correlation between expressiveness and a language’s support for a global view of computation, and we identify key factors for achieving portable performance in multigrid applications.