实时准确的单流动作检测

Yu Liu, Fan Yang, D. Ginhac
{"title":"实时准确的单流动作检测","authors":"Yu Liu, Fan Yang, D. Ginhac","doi":"10.1145/3349801.3349821","DOIUrl":null,"url":null,"abstract":"Analyzing videos of human actions involves understanding the spatial and temporal context of the scenes. State-of-the-art action detection approaches have demonstrated impressive results using Convolutional Neural Networks (CNNs) within a two-stream framework. However, most of them operate in a non-real-time, offline fashion, thus are not well-equipped in many emerging real-world scenarios such as autonomous driving and public surveillance. In addition, they are computationally demanding to be deployed on devices with limited power resources (e.g., embedded systems). To address the above challenges, we propose an efficient single-stream action detection framework by exploiting temporal coherence between successive video frames. This allows CNN appearance features to be cheaply propagated by motions rather than being extracted from every frame. Furthermore, we utilize an implicit motion representation to amplify appearance features. Our method based on motion-guided and motion-aware appearance features is evaluated on the UCF-101-24 dataset. Experiments indicate that the proposed method can achieve real-time action detection up to 32 fps with a comparable accuracy as the two-stream approach.","PeriodicalId":299138,"journal":{"name":"Proceedings of the 13th International Conference on Distributed Smart Cameras","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accurate Single-Stream Action Detection in Real-Time\",\"authors\":\"Yu Liu, Fan Yang, D. Ginhac\",\"doi\":\"10.1145/3349801.3349821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing videos of human actions involves understanding the spatial and temporal context of the scenes. State-of-the-art action detection approaches have demonstrated impressive results using Convolutional Neural Networks (CNNs) within a two-stream framework. However, most of them operate in a non-real-time, offline fashion, thus are not well-equipped in many emerging real-world scenarios such as autonomous driving and public surveillance. In addition, they are computationally demanding to be deployed on devices with limited power resources (e.g., embedded systems). To address the above challenges, we propose an efficient single-stream action detection framework by exploiting temporal coherence between successive video frames. This allows CNN appearance features to be cheaply propagated by motions rather than being extracted from every frame. Furthermore, we utilize an implicit motion representation to amplify appearance features. Our method based on motion-guided and motion-aware appearance features is evaluated on the UCF-101-24 dataset. Experiments indicate that the proposed method can achieve real-time action detection up to 32 fps with a comparable accuracy as the two-stream approach.\",\"PeriodicalId\":299138,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Distributed Smart Cameras\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349801.3349821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349801.3349821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析人类行为的视频需要理解场景的空间和时间背景。最先进的动作检测方法在两流框架内使用卷积神经网络(cnn)展示了令人印象深刻的结果。然而,它们中的大多数以非实时、离线的方式运行,因此在自动驾驶和公共监控等许多新兴的现实场景中并不具备很好的装备。此外,它们在计算上要求部署在功率资源有限的设备上(例如,嵌入式系统)。为了解决上述挑战,我们提出了一个有效的单流动作检测框架,利用连续视频帧之间的时间相干性。这使得CNN的外观特征可以通过运动廉价地传播,而不是从每一帧中提取。此外,我们利用隐式运动表示来放大外观特征。我们基于运动引导和运动感知外观特征的方法在UCF-101-24数据集上进行了评估。实验表明,该方法可以实现高达32 fps的实时动作检测,且精度与双流方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Single-Stream Action Detection in Real-Time
Analyzing videos of human actions involves understanding the spatial and temporal context of the scenes. State-of-the-art action detection approaches have demonstrated impressive results using Convolutional Neural Networks (CNNs) within a two-stream framework. However, most of them operate in a non-real-time, offline fashion, thus are not well-equipped in many emerging real-world scenarios such as autonomous driving and public surveillance. In addition, they are computationally demanding to be deployed on devices with limited power resources (e.g., embedded systems). To address the above challenges, we propose an efficient single-stream action detection framework by exploiting temporal coherence between successive video frames. This allows CNN appearance features to be cheaply propagated by motions rather than being extracted from every frame. Furthermore, we utilize an implicit motion representation to amplify appearance features. Our method based on motion-guided and motion-aware appearance features is evaluated on the UCF-101-24 dataset. Experiments indicate that the proposed method can achieve real-time action detection up to 32 fps with a comparable accuracy as the two-stream approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信